2011-01-19 23:10:54 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
# include "main.h"
template < typename MatrixType > void matrixSum ( const MatrixType & m )
{
typedef typename MatrixType : : Scalar Scalar ;
int rows = m . rows ( ) ;
int cols = m . cols ( ) ;
MatrixType m1 = MatrixType : : Random ( rows , cols ) ;
VERIFY_IS_MUCH_SMALLER_THAN ( MatrixType : : Zero ( rows , cols ) . sum ( ) , Scalar ( 1 ) ) ;
VERIFY_IS_APPROX ( MatrixType : : Ones ( rows , cols ) . sum ( ) , Scalar ( float ( rows * cols ) ) ) ; // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
Scalar x = Scalar ( 0 ) ;
for ( int i = 0 ; i < rows ; i + + ) for ( int j = 0 ; j < cols ; j + + ) x + = m1 ( i , j ) ;
VERIFY_IS_APPROX ( m1 . sum ( ) , x ) ;
}
template < typename VectorType > void vectorSum ( const VectorType & w )
{
typedef typename VectorType : : Scalar Scalar ;
int size = w . size ( ) ;
VectorType v = VectorType : : Random ( size ) ;
for ( int i = 1 ; i < size ; i + + )
{
Scalar s = Scalar ( 0 ) ;
for ( int j = 0 ; j < i ; j + + ) s + = v [ j ] ;
VERIFY_IS_APPROX ( s , v . start ( i ) . sum ( ) ) ;
}
for ( int i = 0 ; i < size - 1 ; i + + )
{
Scalar s = Scalar ( 0 ) ;
for ( int j = i ; j < size ; j + + ) s + = v [ j ] ;
VERIFY_IS_APPROX ( s , v . end ( size - i ) . sum ( ) ) ;
}
for ( int i = 0 ; i < size / 2 ; i + + )
{
Scalar s = Scalar ( 0 ) ;
for ( int j = i ; j < size - i ; j + + ) s + = v [ j ] ;
VERIFY_IS_APPROX ( s , v . segment ( i , size - 2 * i ) . sum ( ) ) ;
}
}
2011-01-25 21:37:18 +08:00
void test_eigen2_sum ( )
2011-01-19 23:10:54 +08:00
{
for ( int i = 0 ; i < g_repeat ; i + + ) {
CALL_SUBTEST ( matrixSum ( Matrix < float , 1 , 1 > ( ) ) ) ;
CALL_SUBTEST ( matrixSum ( Matrix2f ( ) ) ) ;
CALL_SUBTEST ( matrixSum ( Matrix4d ( ) ) ) ;
CALL_SUBTEST ( matrixSum ( MatrixXcf ( 3 , 3 ) ) ) ;
CALL_SUBTEST ( matrixSum ( MatrixXf ( 8 , 12 ) ) ) ;
CALL_SUBTEST ( matrixSum ( MatrixXi ( 8 , 12 ) ) ) ;
}
for ( int i = 0 ; i < g_repeat ; i + + ) {
CALL_SUBTEST ( vectorSum ( VectorXf ( 5 ) ) ) ;
CALL_SUBTEST ( vectorSum ( VectorXd ( 10 ) ) ) ;
CALL_SUBTEST ( vectorSum ( VectorXf ( 33 ) ) ) ;
}
}