2016-12-01 21:02:27 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2016
|
|
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
|
|
// Contact: <eigen@codeplay.com>
|
|
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
|
|
//
|
|
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_padding_sycl
|
2017-02-01 23:29:53 +08:00
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
2016-12-01 21:02:27 +08:00
|
|
|
#define EIGEN_USE_SYCL
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h"
|
|
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
|
|
|
using Eigen::array;
|
|
|
|
using Eigen::SyclDevice;
|
|
|
|
using Eigen::Tensor;
|
|
|
|
using Eigen::TensorMap;
|
|
|
|
|
|
|
|
|
|
|
|
template<typename DataType, int DataLayout, typename IndexType>
|
|
|
|
static void test_simple_padding(const Eigen::SyclDevice& sycl_device)
|
|
|
|
{
|
|
|
|
|
|
|
|
IndexType sizeDim1 = 2;
|
|
|
|
IndexType sizeDim2 = 3;
|
|
|
|
IndexType sizeDim3 = 5;
|
|
|
|
IndexType sizeDim4 = 7;
|
|
|
|
array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
|
|
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
|
|
|
|
tensor.setRandom();
|
|
|
|
|
|
|
|
array<std::pair<IndexType, IndexType>, 4> paddings;
|
|
|
|
paddings[0] = std::make_pair(0, 0);
|
|
|
|
paddings[1] = std::make_pair(2, 1);
|
|
|
|
paddings[2] = std::make_pair(3, 4);
|
|
|
|
paddings[3] = std::make_pair(0, 0);
|
|
|
|
|
|
|
|
IndexType padedSizeDim1 = 2;
|
|
|
|
IndexType padedSizeDim2 = 6;
|
|
|
|
IndexType padedSizeDim3 = 12;
|
|
|
|
IndexType padedSizeDim4 = 7;
|
|
|
|
array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}};
|
|
|
|
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange);
|
|
|
|
|
|
|
|
|
|
|
|
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
|
|
|
|
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(padded.size()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
|
|
|
|
TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu2(gpu_data2, padedtensorRange);
|
|
|
|
|
|
|
|
VERIFY_IS_EQUAL(padded.dimension(0), 2+0);
|
|
|
|
VERIFY_IS_EQUAL(padded.dimension(1), 3+3);
|
|
|
|
VERIFY_IS_EQUAL(padded.dimension(2), 5+7);
|
|
|
|
VERIFY_IS_EQUAL(padded.dimension(3), 7+0);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
|
|
|
|
gpu2.device(sycl_device)=gpu1.pad(paddings);
|
|
|
|
sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2,(padded.size())*sizeof(DataType));
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < padedSizeDim1; ++i) {
|
|
|
|
for (IndexType j = 0; j < padedSizeDim2; ++j) {
|
|
|
|
for (IndexType k = 0; k < padedSizeDim3; ++k) {
|
|
|
|
for (IndexType l = 0; l < padedSizeDim4; ++l) {
|
2016-12-01 21:02:27 +08:00
|
|
|
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
|
|
|
|
VERIFY_IS_EQUAL(padded(i,j,k,l), tensor(i,j-2,k-3,l));
|
|
|
|
} else {
|
|
|
|
VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sycl_device.deallocate(gpu_data1);
|
|
|
|
sycl_device.deallocate(gpu_data2);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename DataType, int DataLayout, typename IndexType>
|
|
|
|
static void test_padded_expr(const Eigen::SyclDevice& sycl_device)
|
|
|
|
{
|
|
|
|
IndexType sizeDim1 = 2;
|
|
|
|
IndexType sizeDim2 = 3;
|
|
|
|
IndexType sizeDim3 = 5;
|
|
|
|
IndexType sizeDim4 = 7;
|
|
|
|
array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
|
|
|
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
|
|
|
|
tensor.setRandom();
|
|
|
|
|
|
|
|
array<std::pair<IndexType, IndexType>, 4> paddings;
|
|
|
|
paddings[0] = std::make_pair(0, 0);
|
|
|
|
paddings[1] = std::make_pair(2, 1);
|
|
|
|
paddings[2] = std::make_pair(3, 4);
|
|
|
|
paddings[3] = std::make_pair(0, 0);
|
|
|
|
|
|
|
|
Eigen::DSizes<IndexType, 2> reshape_dims;
|
|
|
|
reshape_dims[0] = 12;
|
|
|
|
reshape_dims[1] = 84;
|
|
|
|
|
|
|
|
|
|
|
|
Tensor<DataType, 2, DataLayout, IndexType> result(reshape_dims);
|
|
|
|
|
|
|
|
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
|
|
|
|
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(result.size()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
|
|
|
|
TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, reshape_dims);
|
|
|
|
|
|
|
|
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
|
|
|
|
gpu2.device(sycl_device)=gpu1.pad(paddings).reshape(reshape_dims);
|
|
|
|
sycl_device.memcpyDeviceToHost(result.data(), gpu_data2,(result.size())*sizeof(DataType));
|
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 2; ++i) {
|
|
|
|
for (IndexType j = 0; j < 6; ++j) {
|
|
|
|
for (IndexType k = 0; k < 12; ++k) {
|
|
|
|
for (IndexType l = 0; l < 7; ++l) {
|
2016-12-01 21:02:27 +08:00
|
|
|
const float result_value = DataLayout == ColMajor ?
|
|
|
|
result(i+2*j,k+12*l) : result(j+6*i,l+7*k);
|
|
|
|
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
|
|
|
|
VERIFY_IS_EQUAL(result_value, tensor(i,j-2,k-3,l));
|
|
|
|
} else {
|
|
|
|
VERIFY_IS_EQUAL(result_value, 0.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sycl_device.deallocate(gpu_data1);
|
|
|
|
sycl_device.deallocate(gpu_data2);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename DataType, typename dev_Selector> void sycl_padding_test_per_device(dev_Selector s){
|
|
|
|
QueueInterface queueInterface(s);
|
|
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
|
|
test_simple_padding<DataType, RowMajor, int64_t>(sycl_device);
|
|
|
|
test_simple_padding<DataType, ColMajor, int64_t>(sycl_device);
|
|
|
|
test_padded_expr<DataType, RowMajor, int64_t>(sycl_device);
|
|
|
|
test_padded_expr<DataType, ColMajor, int64_t>(sycl_device);
|
|
|
|
|
|
|
|
}
|
|
|
|
void test_cxx11_tensor_padding_sycl()
|
|
|
|
{
|
|
|
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
|
|
|
CALL_SUBTEST(sycl_padding_test_per_device<float>(device));
|
|
|
|
}
|
|
|
|
}
|