eigen/unsupported/test/NonLinear.cpp

1789 lines
63 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
#include <stdio.h>
#include "main.h"
2009-08-09 07:12:14 +08:00
#include <unsupported/Eigen/NonLinear>
int fcn_chkder(int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag)
{
/* subroutine fcn for chkder example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag == 0)
{
/* insert print statements here when nprint is positive. */
return 0;
}
if (iflag != 2)
for (i=1; i<=15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
else
{
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
/* error introduced into next statement for illustration. */
/* corrected statement should read tmp3 = tmp1 . */
tmp3 = tmp2;
if (i > 8) tmp3 = tmp2;
tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
fjac[i-1+ ldfjac*(1-1)] = -1.;
fjac[i-1+ ldfjac*(2-1)] = tmp1*tmp2/tmp4;
fjac[i-1+ ldfjac*(3-1)] = tmp1*tmp3/tmp4;
}
}
return 0;
}
void testChkder()
{
int m=15, n=3;
VectorXd x(n), fvec(m), xp, fvecp(m), err;
MatrixXd fjac(m,n);
VectorXi ipvt;
/* the following values should be suitable for */
/* checking the jacobian matrix. */
x << 9.2e-1, 1.3e-1, 5.4e-1;
ei_chkder<double>(x, fvec, fjac, xp, fvecp, 1, err);
fcn_chkder(m, n, x.data(), fvec.data(), fjac.data(), m, 1);
fcn_chkder(m, n, x.data(), fvec.data(), fjac.data(), m, 2);
fcn_chkder(m, n, xp.data(), fvecp.data(), fjac.data(), m, 1);
ei_chkder<double>(x, fvec, fjac, xp, fvecp, 2, err);
fvecp -= fvec;
// check those
VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m);
fvec_ref <<
-1.181606, -1.429655, -1.606344,
-1.745269, -1.840654, -1.921586,
-1.984141, -2.022537, -2.468977,
-2.827562, -3.473582, -4.437612,
-6.047662, -9.267761, -18.91806;
fvecp_ref <<
-7.724666e-09, -3.432406e-09, -2.034843e-10,
2.313685e-09, 4.331078e-09, 5.984096e-09,
7.363281e-09, 8.53147e-09, 1.488591e-08,
2.33585e-08, 3.522012e-08, 5.301255e-08,
8.26666e-08, 1.419747e-07, 3.19899e-07;
err_ref <<
0.1141397, 0.09943516, 0.09674474,
0.09980447, 0.1073116, 0.1220445,
0.1526814, 1, 1,
1, 1, 1,
1, 1, 1;
VERIFY_IS_APPROX(fvec, fvec_ref);
VERIFY_IS_APPROX(fvecp, fvecp_ref);
VERIFY_IS_APPROX(err, err_ref);
}
struct lmder_functor {
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &x, VectorXd &fvec)
{
double tmp1, tmp2, tmp3;
double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
for (int i = 0; i < 15; i++)
{
tmp1 = i+1;
tmp2 = 16 - i - 1;
tmp3 = (i>=8)? tmp2 : tmp1;
fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
}
return 0;
}
static int df(const VectorXd &x, MatrixXd &fjac)
{
double tmp1, tmp2, tmp3, tmp4;
for (int i = 0; i < 15; i++)
{
tmp1 = i+1;
tmp2 = 16 - i - 1;
tmp3 = (i>=8)? tmp2 : tmp1;
tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
fjac(i,0) = -1;
fjac(i,1) = tmp1*tmp2/tmp4;
fjac(i,2) = tmp1*tmp3/tmp4;
}
return 0;
}
};
void testLmder1()
{
int m=15, n=3, info;
VectorXd x(n), fvec(m);
VectorXi ipvt;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmder1<lmder_functor,double>(x, fvec, ipvt);
// check return value
VERIFY( 1 == info);
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
}
void testLmder()
{
const int m=15, n=3;
int info, nfev=0, njev=0;
double fnorm, covfac, covar_ftol;
VectorXd x(n), fvec(m), diag(n);
MatrixXd fjac;
VectorXi ipvt;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmder<lmder_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return values
VERIFY( 1 == info);
VERIFY(nfev==6);
VERIFY(njev==5);
// check norm
2009-08-22 13:05:10 +08:00
fnorm = fvec.blueNorm();
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
// check covariance
2009-08-20 02:02:49 +08:00
covar_ftol = epsilon<double>();
covfac = fnorm*fnorm/(m-n);
VectorXd wa(n);
ipvt.cwise()+=1; // covar() expects the fortran convention (as qrfac provides)
ei_covar<double>(n, fjac.data(), m, ipvt.data(), covar_ftol, wa.data());
MatrixXd cov_ref(n,n);
cov_ref <<
0.0001531202, 0.002869941, -0.002656662,
0.002869941, 0.09480935, -0.09098995,
-0.002656662, -0.09098995, 0.08778727;
// std::cout << fjac*covfac << std::endl;
MatrixXd cov;
cov = covfac*fjac.corner<n,n>(TopLeft);
VERIFY_IS_APPROX( cov, cov_ref);
// TODO: why isn't this allowed ? :
// VERIFY_IS_APPROX( covfac*fjac.corner<n,n>(TopLeft) , cov_ref);
}
struct hybrj_functor {
2009-08-23 09:14:42 +08:00
static int f(const VectorXd &x, VectorXd &fvec, MatrixXd &fjac, int iflag)
2009-08-10 22:32:45 +08:00
{
/* subroutine fcn for hybrj1 example. */
2009-08-10 22:32:45 +08:00
int j, k;
double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4;
2009-08-23 09:14:42 +08:00
const int n = x.size();
assert(fvec.size()==n);
assert(fjac.rows()==n);
assert(fjac.cols()==n);
2009-08-10 22:32:45 +08:00
if (iflag != 2)
{
for (k = 0; k < n; k++)
2009-08-10 22:32:45 +08:00
{
temp = (three - two*x[k])*x[k];
2009-08-10 22:32:45 +08:00
temp1 = zero;
if (k) temp1 = x[k-1];
2009-08-10 22:32:45 +08:00
temp2 = zero;
if (k != n-1) temp2 = x[k+1];
fvec[k] = temp - temp1 - two*temp2 + one;
2009-08-10 22:32:45 +08:00
}
}
else
{
for (k = 0; k < n; k++)
2009-08-10 22:32:45 +08:00
{
for (j = 0; j < n; j++)
2009-08-23 09:14:42 +08:00
fjac(k,j) = zero;
fjac(k,k) = three - four*x[k];
if (k) fjac(k,k-1) = -one;
if (k != n-1) fjac(k,k+1) = -two;
2009-08-10 22:32:45 +08:00
}
}
return 0;
}
2009-08-10 22:32:45 +08:00
};
void testHybrj1()
{
2009-08-10 22:32:45 +08:00
const int n=9;
int info;
VectorXd x(n), fvec, diag(n);
MatrixXd fjac;
2009-08-10 22:32:45 +08:00
/* the following starting values provide a rough fit. */
x.setConstant(n, -1.);
2009-08-10 22:32:45 +08:00
// do the computation
info = ei_hybrj1<hybrj_functor, double>(x,fvec, fjac);
2009-08-10 22:32:45 +08:00
// check return value
VERIFY( 1 == info);
2009-08-10 22:32:45 +08:00
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 1.192636e-08);
2009-08-10 22:32:45 +08:00
// check x
VectorXd x_ref(n);
x_ref <<
-0.5706545, -0.6816283, -0.7017325,
-0.7042129, -0.701369, -0.6918656,
-0.665792, -0.5960342, -0.4164121;
VERIFY_IS_APPROX(x, x_ref);
}
2009-08-10 22:21:22 +08:00
void testHybrj()
{
const int n=9;
int info, nfev=0, njev=0, mode;
VectorXd x(n), fvec, diag(n), R, qtf;
MatrixXd fjac;
2009-08-10 22:21:22 +08:00
/* the following starting values provide a rough fit. */
x.setConstant(n, -1.);
mode = 2;
2009-08-10 22:21:22 +08:00
diag.setConstant(n, 1.);
2009-08-10 22:21:22 +08:00
// do the computation
info = ei_hybrj<hybrj_functor, double>(x,fvec, nfev, njev, fjac, R, qtf, diag, mode);
2009-08-10 22:21:22 +08:00
// check return value
VERIFY( 1 == info);
VERIFY(nfev==11);
VERIFY(njev==1);
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 1.192636e-08);
2009-08-10 22:21:22 +08:00
// check x
VectorXd x_ref(n);
x_ref <<
-0.5706545, -0.6816283, -0.7017325,
-0.7042129, -0.701369, -0.6918656,
2009-08-10 22:21:22 +08:00
-0.665792, -0.5960342, -0.4164121;
VERIFY_IS_APPROX(x, x_ref);
}
struct hybrd_functor {
static int f(const VectorXd &x, VectorXd &fvec, int /*iflag*/)
{
/* subroutine fcn for hybrd1 example. */
int k;
double one=1, temp, temp1, temp2, three=3, two=2, zero=0;
const int n = x.size();
assert(fvec.size()==n);
for (k=0; k < n; k++)
{
temp = (three - two*x[k])*x[k];
temp1 = zero;
if (k) temp1 = x[k-1];
temp2 = zero;
if (k != n-1) temp2 = x[k+1];
fvec[k] = temp - temp1 - two*temp2 + one;
}
return 0;
}
};
void testHybrd1()
{
2009-08-09 09:16:24 +08:00
int n=9, info;
VectorXd x(n), fvec(n);
2009-08-09 09:16:24 +08:00
/* the following starting values provide a rough solution. */
x.setConstant(n, -1.);
// do the computation
info = ei_hybrd1<hybrd_functor,double>(x, fvec);
2009-08-09 09:16:24 +08:00
// check return value
VERIFY( 1 == info);
2009-08-09 09:16:24 +08:00
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 1.192636e-08);
2009-08-09 09:16:24 +08:00
// check x
VectorXd x_ref(n);
2009-08-09 09:16:24 +08:00
x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121;
VERIFY_IS_APPROX(x, x_ref);
}
2009-08-10 09:39:50 +08:00
void testHybrd()
{
const int n=9;
int info, nfev=0, ml, mu, mode;
VectorXd x(n), fvec, diag(n), R, qtf;
MatrixXd fjac;
2009-08-10 09:39:50 +08:00
/* the following starting values provide a rough fit. */
x.setConstant(n, -1.);
ml = 1;
mu = 1;
mode = 2;
2009-08-10 09:39:50 +08:00
diag.setConstant(n, 1.);
2009-08-10 09:39:50 +08:00
// do the computation
info = ei_hybrd<hybrd_functor, double>(x,fvec, nfev, fjac, R, qtf, diag, mode, ml, mu);
2009-08-10 09:39:50 +08:00
// check return value
VERIFY( 1 == info);
VERIFY(nfev==14);
2009-08-10 09:39:50 +08:00
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 1.192636e-08);
2009-08-10 09:39:50 +08:00
// check x
VectorXd x_ref(n);
x_ref <<
-0.5706545, -0.6816283, -0.7017325,
-0.7042129, -0.701369, -0.6918656,
2009-08-10 09:39:50 +08:00
-0.665792, -0.5960342, -0.4164121;
VERIFY_IS_APPROX(x, x_ref);
}
struct lmstr_functor {
2009-08-23 09:14:42 +08:00
static int f(const VectorXd &x, VectorXd &fvec, VectorXd &fjrow, int iflag)
{
/* subroutine fcn for lmstr1 example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
2009-08-23 09:14:42 +08:00
assert(15==fvec.size());
assert(3==x.size());
assert(fjrow.size()==x.size());
if (iflag < 2)
{
for (i=0; i<15; i++)
{
tmp1 = i+1;
tmp2 = 16 - i - 1;
tmp3 = (i>=8)? tmp2 : tmp1;
fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
}
}
else
{
i = iflag-2;
tmp1 = i+1;
tmp2 = 16 - i - 1;
tmp3 = (i>=8)? tmp2 : tmp1;
tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
fjrow[0] = -1;
fjrow[1] = tmp1*tmp2/tmp4;
fjrow[2] = tmp1*tmp3/tmp4;
}
return 0;
}
};
void testLmstr1()
{
int m=15, n=3, info;
VectorXd x(n), fvec(m);
VectorXi ipvt;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmstr1<lmstr_functor,double>(x, fvec, ipvt);
// check return value
VERIFY( 1 == info);
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695 ;
VERIFY_IS_APPROX(x, x_ref);
}
void testLmstr()
{
const int m=15, n=3;
int info, nfev=0, njev=0;
double fnorm;
VectorXd x(n), fvec(m), diag(n);
MatrixXd fjac;
VectorXi ipvt;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmstr<lmstr_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
VectorXd wa(n);
// check return values
VERIFY( 1 == info);
VERIFY(nfev==6);
VERIFY(njev==5);
// check norm
2009-08-22 13:05:10 +08:00
fnorm = fvec.blueNorm();
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
}
struct lmdif_functor {
static int f(const VectorXd &x, VectorXd &fvec, int /*iflag*/)
{
/* function fcn for lmdif1 example */
int i;
double tmp1,tmp2,tmp3;
double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
assert(x.size()==3);
assert(fvec.size()==15);
for (i=0; i<15; i++)
{
tmp1 = i+1;
tmp2 = 15 - i;
tmp3 = tmp1;
if (i >= 8) tmp3 = tmp2;
fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
}
return 0;
}
};
void testLmdif1()
{
int m=15, n=3, info;
VectorXd x(n), fvec(m);
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmdif1<lmdif_functor,double>(x, fvec);
// check return value
VERIFY( 1 == info);
// check norm
2009-08-22 13:05:10 +08:00
VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.0824106, 1.1330366, 2.3436947;
VERIFY_IS_APPROX(x, x_ref);
}
void testLmdif()
{
const int m=15, n=3;
int info, nfev=0;
double fnorm, covfac, covar_ftol;
VectorXd x(n), fvec(m), diag(n), qtf;
MatrixXd fjac;
VectorXi ipvt;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
// do the computation
info = ei_lmdif<lmdif_functor, double>(x, fvec, nfev, fjac, ipvt, qtf, diag);
// check return values
VERIFY( 1 == info);
VERIFY(nfev==21);
// check norm
2009-08-22 13:05:10 +08:00
fnorm = fvec.blueNorm();
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
// check covariance
2009-08-20 02:02:49 +08:00
covar_ftol = epsilon<double>();
covfac = fnorm*fnorm/(m-n);
VectorXd wa(n);
ipvt.cwise()+=1; // covar() expects the fortran convention (as qrfac provides)
ei_covar<double>(n, fjac.data(), m, ipvt.data(), covar_ftol, wa.data());
MatrixXd cov_ref(n,n);
cov_ref <<
0.0001531202, 0.002869942, -0.002656662,
0.002869942, 0.09480937, -0.09098997,
-0.002656662, -0.09098997, 0.08778729;
// std::cout << fjac*covfac << std::endl;
MatrixXd cov;
cov = covfac*fjac.corner<n,n>(TopLeft);
VERIFY_IS_APPROX( cov, cov_ref);
// TODO: why isn't this allowed ? :
// VERIFY_IS_APPROX( covfac*fjac.corner<n,n>(TopLeft) , cov_ref);
}
struct chwirut2_functor {
static const double m_x[54];
static const double m_y[54];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
int i;
assert(b.size()==3);
assert(fvec.size()==54);
for(i=0; i<54; i++) {
double x = m_x[i];
fvec[i] = exp(-b[0]*x)/(b[1]+b[2]*x) - m_y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==3);
assert(fjac.rows()==54);
assert(fjac.cols()==3);
for(int i=0; i<54; i++) {
double x = m_x[i];
double factor = 1./(b[1]+b[2]*x);
double e = exp(-b[0]*x);
fjac(i,0) = -x*e*factor;
fjac(i,1) = -e*factor*factor;
fjac(i,2) = -x*e*factor*factor;
}
return 0;
}
};
const double chwirut2_functor::m_x[54] = { 0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, 2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0, 3.000E0, .750E0, 3.000E0, 1.500E0, 6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0, 2.000E0, 4.000E0, .750E0, 2.000E0, 5.000E0, .750E0, 2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .500E0, 6.000E0, 3.000E0, .500E0, 2.750E0, .500E0, 1.750E0};
const double chwirut2_functor::m_y[54] = { 92.9000E0 ,57.1000E0 ,31.0500E0 ,11.5875E0 ,8.0250E0 ,63.6000E0 ,21.4000E0 ,14.2500E0 ,8.4750E0 ,63.8000E0 ,26.8000E0 ,16.4625E0 ,7.1250E0 ,67.3000E0 ,41.0000E0 ,21.1500E0 ,8.1750E0 ,81.5000E0 ,13.1200E0 ,59.9000E0 ,14.6200E0 ,32.9000E0 ,5.4400E0 ,12.5600E0 ,5.4400E0 ,32.0000E0 ,13.9500E0 ,75.8000E0 ,20.0000E0 ,10.4200E0 ,59.5000E0 ,21.6700E0 ,8.5500E0 ,62.0000E0 ,20.2000E0 ,7.7600E0 ,3.7500E0 ,11.8100E0 ,54.7000E0 ,23.7000E0 ,11.5500E0 ,61.3000E0 ,17.7000E0 ,8.7400E0 ,59.2000E0 ,16.3000E0 ,8.6200E0 ,81.0000E0 ,4.8700E0 ,14.6200E0 ,81.7000E0 ,17.1700E0 ,81.3000E0 ,28.9000E0 };
2009-08-14 23:48:04 +08:00
// http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml
void testNistChwirut2(void)
{
const int m=54, n=3;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 0.1, 0.01, 0.02;
// do the computation
info = ei_lmder<chwirut2_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 10 == nfev);
VERIFY( 8 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.1304802941E+02);
// check x
VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
/*
* Second try
*/
x<< 0.15, 0.008, 0.010;
// do the computation
info = ei_lmder<chwirut2_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 400, 1.E6*epsilon<double>(), 1.E6*epsilon<double>());
// check return value
VERIFY( 1 == info);
2009-08-14 23:25:39 +08:00
VERIFY( 7 == nfev);
VERIFY( 6 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.1304802941E+02);
// check x
VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
}
struct misra1a_functor {
static const double m_x[14];
static const double m_y[14];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==2);
assert(fvec.size()==14);
for(int i=0; i<14; i++) {
fvec[i] = b[0]*(1.-exp(-b[1]*m_x[i])) - m_y[i] ;
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==2);
assert(fjac.rows()==14);
assert(fjac.cols()==2);
for(int i=0; i<14; i++) {
fjac(i,0) = (1.-exp(-b[1]*m_x[i]));
fjac(i,1) = (b[0]*m_x[i]*exp(-b[1]*m_x[i]));
}
return 0;
}
};
const double misra1a_functor::m_x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
const double misra1a_functor::m_y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
// http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml
void testNistMisra1a(void)
{
const int m=14, n=2;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 500., 0.0001;
// do the computation
info = ei_lmder<misra1a_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 19 == nfev);
VERIFY( 15 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.2455138894E-01);
// check x
VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
/*
* Second try
*/
x<< 250., 0.0005;
// do the computation
info = ei_lmder<misra1a_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 5 == nfev);
VERIFY( 4 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.2455138894E-01);
// check x
VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
}
struct hahn1_functor {
static const double m_x[236];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
static const double m_y[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0 , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0 , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0 , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 , 16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0 , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0 , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 , 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0 , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0 , 20.935E0 , 21.035E0 , 20.93E0 , 21.074E0 , 21.085E0 , 20.935E0 };
// static int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
assert(b.size()==7);
assert(fvec.size()==236);
for(int i=0; i<236; i++) {
double x=m_x[i], xx=x*x, xxx=xx*x;
fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - m_y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==7);
assert(fjac.rows()==236);
assert(fjac.cols()==7);
for(int i=0; i<236; i++) {
double x=m_x[i], xx=x*x, xxx=xx*x;
double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
fjac(i,0) = 1.*fact;
fjac(i,1) = x*fact;
fjac(i,2) = xx*fact;
fjac(i,3) = xxx*fact;
fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
fjac(i,4) = x*fact;
fjac(i,5) = xx*fact;
fjac(i,6) = xxx*fact;
}
return 0;
}
};
const double hahn1_functor::m_x[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0 , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 , 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 , 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0 , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0 , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0};
// http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml
void testNistHahn1(void)
{
const int m=236, n=7;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 10., -1., .05, -.00001, -.05, .001, -.000001;
// do the computation
info = ei_lmder<hahn1_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 11== nfev);
VERIFY( 10== njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00);
// check x
VERIFY_IS_APPROX(x[0], 1.0776351733E+00 );
VERIFY_IS_APPROX(x[1],-1.2269296921E-01 );
VERIFY_IS_APPROX(x[2], 4.0863750610E-03 );
VERIFY_IS_APPROX(x[3],-1.426264e-06); // shoulde be : -1.4262662514E-06
VERIFY_IS_APPROX(x[4],-5.7609940901E-03 );
VERIFY_IS_APPROX(x[5], 2.4053735503E-04 );
VERIFY_IS_APPROX(x[6],-1.2314450199E-07 );
/*
* Second try
*/
x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001;
// do the computation
info = ei_lmder<hahn1_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 11 == nfev);
VERIFY( 10 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00);
// check x
VERIFY_IS_APPROX(x[0], 1.077640); // should be : 1.0776351733E+00
VERIFY_IS_APPROX(x[1], -0.1226933); // should be : -1.2269296921E-01
VERIFY_IS_APPROX(x[2], 0.004086383); // should be : 4.0863750610E-03
VERIFY_IS_APPROX(x[3], -1.426277e-06); // shoulde be : -1.4262662514E-06
VERIFY_IS_APPROX(x[4],-5.7609940901E-03 );
VERIFY_IS_APPROX(x[5], 0.00024053772); // should be : 2.4053735503E-04
VERIFY_IS_APPROX(x[6], -1.231450e-07); // should be : -1.2314450199E-07
}
struct misra1d_functor {
static const double x[14];
static const double y[14];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==2);
assert(fvec.size()==14);
for(int i=0; i<14; i++) {
fvec[i] = b[0]*b[1]*x[i]/(1.+b[1]*x[i]) - y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==2);
assert(fjac.rows()==14);
assert(fjac.cols()==2);
for(int i=0; i<14; i++) {
double den = 1.+b[1]*x[i];
fjac(i,0) = b[1]*x[i] / den;
fjac(i,1) = b[0]*x[i]*(den-b[1]*x[i])/den/den;
}
return 0;
}
};
const double misra1d_functor::x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
const double misra1d_functor::y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
// http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml
void testNistMisra1d(void)
{
const int m=14, n=2;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 500., 0.0001;
// do the computation
info = ei_lmder<misra1d_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 3 == info);
VERIFY( 9 == nfev);
VERIFY( 7 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6419295283E-02);
// check x
VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
/*
* Second try
*/
x<< 450., 0.0003;
// do the computation
info = ei_lmder<misra1d_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 4 == nfev);
VERIFY( 3 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6419295283E-02);
// check x
VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
}
struct lanczos1_functor {
static const double x[24];
static const double y[24];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==6);
assert(fvec.size()==24);
for(int i=0; i<24; i++)
fvec[i] = b[0]*exp(-b[1]*x[i]) + b[2]*exp(-b[3]*x[i]) + b[4]*exp(-b[5]*x[i]) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==6);
assert(fjac.rows()==24);
assert(fjac.cols()==6);
for(int i=0; i<24; i++) {
fjac(i,0) = exp(-b[1]*x[i]);
fjac(i,1) = -b[0]*x[i]*exp(-b[1]*x[i]);
fjac(i,2) = exp(-b[3]*x[i]);
fjac(i,3) = -b[2]*x[i]*exp(-b[3]*x[i]);
fjac(i,4) = exp(-b[5]*x[i]);
fjac(i,5) = -b[4]*x[i]*exp(-b[5]*x[i]);
}
return 0;
}
};
const double lanczos1_functor::x[24] = { 0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, 2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, 4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, 6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, 8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, 1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00 };
const double lanczos1_functor::y[24] = { 2.513400000000E+00 ,2.044333373291E+00 ,1.668404436564E+00 ,1.366418021208E+00 ,1.123232487372E+00 ,9.268897180037E-01 ,7.679338563728E-01 ,6.388775523106E-01 ,5.337835317402E-01 ,4.479363617347E-01 ,3.775847884350E-01 ,3.197393199326E-01 ,2.720130773746E-01 ,2.324965529032E-01 ,1.996589546065E-01 ,1.722704126914E-01 ,1.493405660168E-01 ,1.300700206922E-01 ,1.138119324644E-01 ,1.000415587559E-01 ,8.833209084540E-02 ,7.833544019350E-02 ,6.976693743449E-02 ,6.239312536719E-02 };
// http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml
void testNistLanczos1(void)
{
const int m=24, n=6;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 1.2, 0.3, 5.6, 5.5, 6.5, 7.6;
// do the computation
info = ei_lmder<lanczos1_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 2 == info);
VERIFY( 79 == nfev);
VERIFY( 72 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.429604433690E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
// check x
VERIFY_IS_APPROX(x[0], 9.5100000027E-02 );
VERIFY_IS_APPROX(x[1], 1.0000000001E+00 );
VERIFY_IS_APPROX(x[2], 8.6070000013E-01 );
VERIFY_IS_APPROX(x[3], 3.0000000002E+00 );
VERIFY_IS_APPROX(x[4], 1.5575999998E+00 );
VERIFY_IS_APPROX(x[5], 5.0000000001E+00 );
/*
* Second try
*/
x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3;
// do the computation
info = ei_lmder<lanczos1_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 2 == info);
VERIFY( 9 == nfev);
VERIFY( 8 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.43049947737308E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
// check x
VERIFY_IS_APPROX(x[0], 9.5100000027E-02 );
VERIFY_IS_APPROX(x[1], 1.0000000001E+00 );
VERIFY_IS_APPROX(x[2], 8.6070000013E-01 );
VERIFY_IS_APPROX(x[3], 3.0000000002E+00 );
VERIFY_IS_APPROX(x[4], 1.5575999998E+00 );
VERIFY_IS_APPROX(x[5], 5.0000000001E+00 );
}
struct rat42_functor {
static const double x[9];
static const double y[9];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==3);
assert(fvec.size()==9);
for(int i=0; i<9; i++) {
fvec[i] = b[0] / (1.+exp(b[1]-b[2]*x[i])) - y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==3);
assert(fjac.rows()==9);
assert(fjac.cols()==3);
for(int i=0; i<9; i++) {
double e = exp(b[1]-b[2]*x[i]);
fjac(i,0) = 1./(1.+e);
fjac(i,1) = -b[0]*e/(1.+e)/(1.+e);
fjac(i,2) = +b[0]*e*x[i]/(1.+e)/(1.+e);
}
return 0;
}
};
const double rat42_functor::x[9] = { 9.000E0, 14.000E0, 21.000E0, 28.000E0, 42.000E0, 57.000E0, 63.000E0, 70.000E0, 79.000E0 };
const double rat42_functor::y[9] = { 8.930E0 ,10.800E0 ,18.590E0 ,22.330E0 ,39.350E0 ,56.110E0 ,61.730E0 ,64.620E0 ,67.080E0 };
// http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml
void testNistRat42(void)
{
const int m=9, n=3;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 100., 1., 0.1;
// do the computation
info = ei_lmder<rat42_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 10 == nfev);
VERIFY( 8 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.0565229338E+00);
// check x
VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
/*
* Second try
*/
x<< 75., 2.5, 0.07;
// do the computation
info = ei_lmder<rat42_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 6 == nfev);
VERIFY( 5 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.0565229338E+00);
// check x
VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
}
struct MGH10_functor {
static const double x[16];
static const double y[16];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==3);
assert(fvec.size()==16);
for(int i=0; i<16; i++)
fvec[i] = b[0] * exp(b[1]/(x[i]+b[2])) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==3);
assert(fjac.rows()==16);
assert(fjac.cols()==3);
for(int i=0; i<16; i++) {
double factor = 1./(x[i]+b[2]);
double e = exp(b[1]*factor);
fjac(i,0) = e;
fjac(i,1) = b[0]*factor*e;
fjac(i,2) = -b[1]*b[0]*factor*factor*e;
}
return 0;
}
};
const double MGH10_functor::x[16] = { 5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, 8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, 1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02 };
const double MGH10_functor::y[16] = { 3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, 1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, 4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03 };
// http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml
void testNistMGH10(void)
{
const int m=16, n=3;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 2., 400000., 25000.;
// do the computation
info = ei_lmder<MGH10_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 2 == info);
VERIFY( 285 == nfev);
VERIFY( 250 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7945855171E+01);
// check x
VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
/*
* Second try
*/
x<< 0.02, 4000., 250.;
// do the computation
info = ei_lmder<MGH10_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 2 == info);
VERIFY( 126 == nfev);
VERIFY( 116 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7945855171E+01);
// check x
VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
}
struct BoxBOD_functor {
static const double x[6];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
static const double y[6] = { 109., 149., 149., 191., 213., 224. };
assert(b.size()==2);
assert(fvec.size()==6);
for(int i=0; i<6; i++)
fvec[i] = b[0]*(1.-exp(-b[1]*x[i])) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==2);
assert(fjac.rows()==6);
assert(fjac.cols()==2);
for(int i=0; i<6; i++) {
double e = exp(-b[1]*x[i]);
fjac(i,0) = 1.-e;
fjac(i,1) = b[0]*x[i]*e;
}
return 0;
}
};
const double BoxBOD_functor::x[6] = { 1., 2., 3., 5., 7., 10. };
// http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml
void testNistBoxBOD(void)
{
const int m=6, n=2;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 1., 1.;
// do the computation
info = ei_lmder<BoxBOD_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 10., 400, 1E6*epsilon<double>(), 1E6*epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 31 == nfev);
VERIFY( 25 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.1680088766E+03);
// check x
VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
/*
* Second try
*/
x<< 100., 0.75;
// do the computation
info = ei_lmder<BoxBOD_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 14000, epsilon<double>(), epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 15 == nfev);
VERIFY( 14 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.1680088766E+03);
// check x
VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
}
struct MGH17_functor {
static const double x[33];
static const double y[33];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==5);
assert(fvec.size()==33);
for(int i=0; i<33; i++)
fvec[i] = b[0] + b[1]*exp(-b[3]*x[i]) + b[2]*exp(-b[4]*x[i]) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==5);
assert(fjac.rows()==33);
assert(fjac.cols()==5);
for(int i=0; i<33; i++) {
fjac(i,0) = 1.;
fjac(i,1) = exp(-b[3]*x[i]);
fjac(i,2) = exp(-b[4]*x[i]);
fjac(i,3) = -x[i]*b[1]*exp(-b[3]*x[i]);
fjac(i,4) = -x[i]*b[2]*exp(-b[4]*x[i]);
}
return 0;
}
};
const double MGH17_functor::x[33] = { 0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, 6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, 1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, 1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, 2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, 3.000000E+02, 3.100000E+02, 3.200000E+02 };
const double MGH17_functor::y[33] = { 8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, 8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, 6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, 5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, 4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, 4.140000E-01, 4.110000E-01, 4.060000E-01 };
// http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml
void testNistMGH17(void)
{
const int m=33, n=5;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
#if 1
/*
* First try
*/
x<< 50., 150., -100., 1., 2.;
// do the computation
info = ei_lmder<MGH17_functor, double>(
x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 5000, epsilon<double>(), epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 599 == nfev);
VERIFY( 544 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.4648946975E-05);
// check x
VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
#endif
/*
* Second try
*/
x<< 0.5 ,1.5 ,-1 ,0.01 ,0.02;
// do the computation
info = ei_lmder<MGH17_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 18 == nfev);
VERIFY( 15 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.4648946975E-05);
// check x
VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
}
struct MGH09_functor {
static const double _x[11];
static const double y[11];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==4);
assert(fvec.size()==11);
for(int i=0; i<11; i++) {
double x = _x[i], xx=x*x;
fvec[i] = b[0]*(xx+x*b[1])/(xx+x*b[2]+b[3]) - y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==4);
assert(fjac.rows()==11);
assert(fjac.cols()==4);
for(int i=0; i<11; i++) {
double x = _x[i], xx=x*x;
double factor = 1./(xx+x*b[2]+b[3]);
fjac(i,0) = (xx+x*b[1]) * factor;
fjac(i,1) = b[0]*x* factor;
fjac(i,2) = - b[0]*(xx+x*b[1]) * x * factor * factor;
fjac(i,3) = - b[0]*(xx+x*b[1]) * factor * factor;
}
return 0;
}
};
const double MGH09_functor::_x[11] = { 4., 2., 1., 5.E-1 , 2.5E-01, 1.670000E-01, 1.250000E-01, 1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02 };
const double MGH09_functor::y[11] = { 1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, 4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02 };
// http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml
void testNistMGH09(void)
{
const int m=11, n=4;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 25., 39, 41.5, 39.;
// do the computation
info = ei_lmder<MGH09_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 5000);
// 1, 100., 5000, epsilon<double>(), epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 503== nfev);
VERIFY( 385 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 3.0750560385E-04);
// check x
VERIFY_IS_APPROX(x[0], 0.19280624); // should be 1.9280693458E-01
VERIFY_IS_APPROX(x[1], 0.19129774); // should be 1.9128232873E-01
VERIFY_IS_APPROX(x[2], 0.12305940); // should be 1.2305650693E-01
VERIFY_IS_APPROX(x[3], 0.13606946); // should be 1.3606233068E-01
/*
* Second try
*/
x<< 0.25, 0.39, 0.415, 0.39;
// do the computation
info = ei_lmder<MGH09_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 18 == nfev);
VERIFY( 16 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 3.0750560385E-04);
// check x
VERIFY_IS_APPROX(x[0], 0.19280781); // should be 1.9280693458E-01
VERIFY_IS_APPROX(x[1], 0.19126265); // should be 1.9128232873E-01
VERIFY_IS_APPROX(x[2], 0.12305280); // should be 1.2305650693E-01
VERIFY_IS_APPROX(x[3], 0.13605322); // should be 1.3606233068E-01
}
struct Bennett5_functor {
static const double x[154];
static const double y[154];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==3);
assert(fvec.size()==154);
for(int i=0; i<154; i++)
fvec[i] = b[0]* pow(b[1]+x[i],-1./b[2]) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==3);
assert(fjac.rows()==154);
assert(fjac.cols()==3);
for(int i=0; i<154; i++) {
double e = pow(b[1]+x[i],-1./b[2]);
fjac(i,0) = e;
fjac(i,1) = - b[0]*e/b[2]/(b[1]+x[i]);
fjac(i,2) = b[0]*e*log(b[1]+x[i])/b[2]/b[2];
}
return 0;
}
};
const double Bennett5_functor::x[154] = { 7.447168E0, 8.102586E0, 8.452547E0, 8.711278E0, 8.916774E0, 9.087155E0, 9.232590E0, 9.359535E0, 9.472166E0, 9.573384E0, 9.665293E0, 9.749461E0, 9.827092E0, 9.899128E0, 9.966321E0, 10.029280E0, 10.088510E0, 10.144430E0, 10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, 10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, 10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, 11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, 11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, 11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, 11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0, 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, 11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, 11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, 11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, 11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, 12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, 12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, 12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, 12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, 12.272240E0 };
const double Bennett5_functor::y[154] = { -34.834702E0 ,-34.393200E0 ,-34.152901E0 ,-33.979099E0 ,-33.845901E0 ,-33.732899E0 ,-33.640301E0 ,-33.559200E0 ,-33.486801E0 ,-33.423100E0 ,-33.365101E0 ,-33.313000E0 ,-33.260899E0 ,-33.217400E0 ,-33.176899E0 ,-33.139198E0 ,-33.101601E0 ,-33.066799E0 ,-33.035000E0 ,-33.003101E0 ,-32.971298E0 ,-32.942299E0 ,-32.916302E0 ,-32.890202E0 ,-32.864101E0 ,-32.841000E0 ,-32.817799E0 ,-32.797501E0 ,-32.774300E0 ,-32.757000E0 ,-32.733799E0 ,-32.716400E0 ,-32.699100E0 ,-32.678799E0 ,-32.661400E0 ,-32.644001E0 ,-32.626701E0 ,-32.612202E0 ,-32.597698E0 ,-32.583199E0 ,-32.568699E0 ,-32.554298E0 ,-32.539799E0 ,-32.525299E0 ,-32.510799E0 ,-32.499199E0 ,-32.487598E0 ,-32.473202E0 ,-32.461601E0 ,-32.435501E0 ,-32.435501E0 ,-32.426800E0 ,-32.412300E0 ,-32.400799E0 ,-32.392101E0 ,-32.380501E0 ,-32.366001E0 ,-32.357300E0 ,-32.348598E0 ,-32.339901E0 ,-32.328400E0 ,-32.319698E0 ,-32.311001E0 ,-32.299400E0 ,-32.290699E0 ,-32.282001E0 ,-32.273300E0 ,-32.264599E0 ,-32.256001E0 ,-32.247299E0 ,-32.238602E0 ,-32.229900E0 ,-32.224098E0 ,-32.215401E0 ,-32.203800E0 ,-32.198002E0 ,-32.189400E0 ,-32.183601E0 ,-32.174900E0 ,-32.169102E0 ,-32.163300E0 ,-32.154598E0 ,-32.145901E0 ,-32.140099E0 ,-32.131401E0 ,-32.125599E0 ,-32.119801E0 ,-32.111198E0 ,-32.105400E0 ,-32.096699E0 ,-32.090900E0 ,-32.088001E0 ,-32.079300E0 ,-32.073502E0 ,-32.067699E0 ,-32.061901E0 ,-32.056099E0 ,-32.050301E0 ,-32.044498E0 ,-32.038799E0 ,-32.033001E0 ,-32.027199E0 ,-32.024300E0 ,-32.018501E0 ,-32.012699E0 ,-32.004002E0 ,-32.001099E0 ,-31.995300E0 ,-31.989500E0 ,-31.983700E0 ,-31.977900E0 ,-31.972099E0 ,-31.969299E0 ,-31.963501E0 ,-31.957701E0 ,-31.951900E0 ,-31.946100E0 ,-31.940300E0 ,-31.937401E0 ,-31.931601E0 ,-31.925800E0 ,-31.922899E0 ,-31.917101E0 ,-31.911301E0 ,-31.908400E0 ,-31.902599E0 ,-31.896900E0 ,-31.893999E0 ,-31.888201E0 ,-31.885300E0 ,-31.882401E0 ,-31.876600E0 ,-31.873699E0 ,-31.867901E0 ,-31.862101E0 ,-31.859200E0 ,-31.856300E0 ,-31.850500E0 ,-31.844700E0 ,-31.841801E0 ,-31.838900E0 ,-31.833099E0 ,-31.830200E0 ,-31.827299E0 ,-31.821600E0 ,-31.818701E0 ,-31.812901E0 ,-31.809999E0 ,-31.807100E0 ,-31.801300E0 ,-31.798401E0 ,-31.795500E0 ,-31.789700E0 ,-31.786800E0 };
2009-08-14 23:48:04 +08:00
// http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml
void testNistBennett5(void)
{
const int m=154, n=3;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< -2000., 50., 0.8;
// do the computation
info = ei_lmder<Bennett5_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 5000);
// check return value
VERIFY( 1 == info);
VERIFY( 758 == nfev);
VERIFY( 744 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.2404744073E-04);
// check x
VERIFY_IS_APPROX(x[0], -2.5235058043E+03);
VERIFY_IS_APPROX(x[1], 4.6736564644E+01);
VERIFY_IS_APPROX(x[2], 9.3218483193E-01);
/*
* Second try
*/
x<< -1500., 45., 0.85;
// do the computation
info = ei_lmder<Bennett5_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 203 == nfev);
VERIFY( 192 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.2404744073E-04);
// check x
VERIFY_IS_APPROX(x[0], -2523.3007865); // should be -2.5235058043E+03
VERIFY_IS_APPROX(x[1], 46.735705771); // should be 4.6736564644E+01);
VERIFY_IS_APPROX(x[2], 0.93219881891); // should be 9.3218483193E-01);
}
struct thurber_functor {
static const double _x[37];
static const double _y[37];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
// static int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
assert(b.size()==7);
assert(fvec.size()==37);
for(int i=0; i<37; i++) {
double x=_x[i], xx=x*x, xxx=xx*x;
fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i];
}
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==7);
assert(fjac.rows()==37);
assert(fjac.cols()==7);
for(int i=0; i<37; i++) {
double x=_x[i], xx=x*x, xxx=xx*x;
double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
fjac(i,0) = 1.*fact;
fjac(i,1) = x*fact;
fjac(i,2) = xx*fact;
fjac(i,3) = xxx*fact;
fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
fjac(i,4) = x*fact;
fjac(i,5) = xx*fact;
fjac(i,6) = xxx*fact;
}
return 0;
}
};
const double thurber_functor::_x[37] = { -3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, -0.109E0, -0.103E0, 0.010E0, 0.119E0, 0.377E0, 0.790E0, 0.963E0, 1.006E0, 1.115E0, 1.572E0, 1.841E0, 2.047E0, 2.200E0 };
const double thurber_functor::_y[37] = { 80.574E0, 84.248E0, 87.264E0, 87.195E0, 89.076E0, 89.608E0, 89.868E0, 90.101E0, 92.405E0, 95.854E0, 100.696E0, 101.060E0, 401.672E0, 390.724E0, 567.534E0, 635.316E0, 733.054E0, 759.087E0, 894.206E0, 990.785E0, 1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, 1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, 1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0};
// http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
void testNistThurber(void)
{
const int m=37, n=7;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 1000 ,1000 ,400 ,40 ,0.7,0.3,0.0 ;
// do the computation
info = ei_lmder<thurber_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 400, 1.E4*epsilon<double>(), 1.E4*epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 39 == nfev);
VERIFY( 36== njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6427082397E+03);
// check x
VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
/*
* Second try
*/
x<< 1300 ,1500 ,500 ,75 ,1 ,0.4 ,0.05 ;
// do the computation
info = ei_lmder<thurber_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 400, 1.E4*epsilon<double>(), 1.E4*epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 29 == nfev);
VERIFY( 28 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6427082397E+03);
// check x
VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
}
struct rat43_functor {
static const double x[15];
static const double y[15];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==4);
assert(fvec.size()==15);
for(int i=0; i<15; i++)
fvec[i] = b[0] * pow(1.+exp(b[1]-b[2]*x[i]),-1./b[3]) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==4);
assert(fjac.rows()==15);
assert(fjac.cols()==4);
for(int i=0; i<15; i++) {
double e = exp(b[1]-b[2]*x[i]);
double power = -1./b[3];
fjac(i,0) = pow(1.+e, power);
fjac(i,1) = power*b[0]*e*pow(1.+e, power-1.);
fjac(i,2) = -power*b[0]*e*x[i]*pow(1.+e, power-1.);
fjac(i,3) = b[0]*power*power*log(1.+e)*pow(1.+e, power);
}
return 0;
}
};
const double rat43_functor::x[15] = { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. };
const double rat43_functor::y[15] = { 16.08, 33.83, 65.80, 97.20, 191.55, 326.20, 386.87, 520.53, 590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41 };
// http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml
void testNistRat43(void)
{
const int m=15, n=4;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 100., 10., 1., 1.;
// do the computation
info = ei_lmder<rat43_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 400, 1.E6*epsilon<double>(), 1.E6*epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 27 == nfev);
VERIFY( 20 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7864049080E+03);
// check x
VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
/*
* Second try
*/
x<< 700., 5., 0.75, 1.3;
// do the computation
info = ei_lmder<rat43_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag,
1, 100., 400, 1.E5*epsilon<double>(), 1.E5*epsilon<double>());
// check return value
VERIFY( 1 == info);
VERIFY( 9 == nfev);
VERIFY( 8 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7864049080E+03);
// check x
VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
}
struct eckerle4_functor {
static const double x[35];
static const double y[35];
static int debug(const VectorXd & /* x */, const VectorXd & /* fvec */, const MatrixXd & /* fjac */) { return 0;}
static int f(const VectorXd &b, VectorXd &fvec)
{
assert(b.size()==3);
assert(fvec.size()==35);
for(int i=0; i<35; i++)
fvec[i] = b[0]/b[1] * exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/(b[1]*b[1])) - y[i];
return 0;
}
static int df(const VectorXd &b, MatrixXd &fjac)
{
assert(b.size()==3);
assert(fjac.rows()==35);
assert(fjac.cols()==3);
for(int i=0; i<35; i++) {
double b12 = b[1]*b[1];
double e = exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/b12);
fjac(i,0) = e / b[1];
fjac(i,1) = ((x[i]-b[2])*(x[i]-b[2])/b12-1.) * b[0]*e/b12;
fjac(i,2) = (x[i]-b[2])*e*b[0]/b[1]/b12;
}
return 0;
}
};
const double eckerle4_functor::x[35] = { 400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0};
const double eckerle4_functor::y[35] = { 0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710 };
// http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml
void testNistEckerle4(void)
{
const int m=35, n=3;
int info, nfev=0, njev=0;
VectorXd x(n), fvec(m), diag;
MatrixXd fjac;
VectorXi ipvt;
/*
* First try
*/
x<< 1., 10., 500.;
// do the computation
info = ei_lmder<eckerle4_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 18 == nfev);
VERIFY( 15 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.4635887487E-03);
// check x
VERIFY_IS_APPROX(x[0], 1.5543827178);
VERIFY_IS_APPROX(x[1], 4.0888321754);
VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
/*
* Second try
*/
x<< 1.5, 5., 450.;
// do the computation
info = ei_lmder<eckerle4_functor, double>(x, fvec, nfev, njev, fjac, ipvt, diag);
// check return value
VERIFY( 1 == info);
VERIFY( 7 == nfev);
VERIFY( 6 == njev);
// check norm^2
VERIFY_IS_APPROX(fvec.squaredNorm(), 1.4635887487E-03);
// check x
VERIFY_IS_APPROX(x[0], 1.5543827178);
VERIFY_IS_APPROX(x[1], 4.0888321754);
VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
}
void test_NonLinear()
{
// Tests using the examples provided by (c)minpack
CALL_SUBTEST(testChkder());
CALL_SUBTEST(testLmder1());
CALL_SUBTEST(testLmder());
CALL_SUBTEST(testHybrj1());
CALL_SUBTEST(testHybrj());
CALL_SUBTEST(testHybrd1());
CALL_SUBTEST(testHybrd());
CALL_SUBTEST(testLmstr1());
CALL_SUBTEST(testLmstr());
CALL_SUBTEST(testLmdif1());
CALL_SUBTEST(testLmdif());
// NIST tests, level of difficulty = "Lower"
CALL_SUBTEST(testNistMisra1a());
CALL_SUBTEST(testNistChwirut2());
// NIST tests, level of difficulty = "Average"
CALL_SUBTEST(testNistHahn1());
CALL_SUBTEST(testNistMisra1d());
CALL_SUBTEST(testNistMGH17());
CALL_SUBTEST(testNistLanczos1());
// NIST tests, level of difficulty = "Higher"
CALL_SUBTEST(testNistRat42());
CALL_SUBTEST(testNistMGH10());
CALL_SUBTEST(testNistBoxBOD());
CALL_SUBTEST(testNistMGH09());
CALL_SUBTEST(testNistBennett5());
CALL_SUBTEST(testNistThurber());
CALL_SUBTEST(testNistRat43());
CALL_SUBTEST(testNistEckerle4());
}
/*
* Can be useful for debugging...
printf("info, nfev, njev : %d, %d, %d\n", info, nfev, njev);
printf("x[0] : %.32g\n", x[0]);
printf("x[1] : %.32g\n", x[1]);
printf("x[2] : %.32g\n", x[2]);
printf("x[3] : %.32g\n", x[3]);
printf("fvec.squaredNorm() : %.32g\n", fvec.squaredNorm());
*/