2009-08-22 13:13:21 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
|
|
//
|
|
|
|
// Eigen is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 3 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Alternatively, you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU General Public License as
|
|
|
|
// published by the Free Software Foundation; either version 2 of
|
|
|
|
// the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License and a copy of the GNU General Public License along with
|
|
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/QR>
|
|
|
|
|
|
|
|
template<typename MatrixType> void qr()
|
|
|
|
{
|
|
|
|
/* this test covers the following files: QR.h */
|
|
|
|
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
|
|
|
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
|
|
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
|
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType m1;
|
|
|
|
createRandomMatrixOfRank(rank,rows,cols,m1);
|
2009-08-24 06:04:33 +08:00
|
|
|
FullPivotingHouseholderQR<MatrixType> qr(m1);
|
2009-08-22 13:13:21 +08:00
|
|
|
VERIFY_IS_APPROX(rank, qr.rank());
|
2009-08-24 12:23:35 +08:00
|
|
|
VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
|
|
|
|
VERIFY(!qr.isInjective());
|
|
|
|
VERIFY(!qr.isInvertible());
|
|
|
|
VERIFY(!qr.isSurjective());
|
|
|
|
|
2009-08-22 13:13:21 +08:00
|
|
|
|
|
|
|
MatrixType r = qr.matrixQR();
|
|
|
|
// FIXME need better way to construct trapezoid
|
|
|
|
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
|
|
|
|
|
|
|
MatrixType b = qr.matrixQ() * r;
|
|
|
|
|
|
|
|
MatrixType c = MatrixType::Zero(rows,cols);
|
|
|
|
|
|
|
|
for(int i = 0; i < cols; ++i) c.col(qr.colsPermutation().coeff(i)) = b.col(i);
|
|
|
|
VERIFY_IS_APPROX(m1, c);
|
|
|
|
|
|
|
|
MatrixType m2 = MatrixType::Random(cols,cols2);
|
|
|
|
MatrixType m3 = m1*m2;
|
|
|
|
m2 = MatrixType::Random(cols,cols2);
|
2009-08-24 12:23:35 +08:00
|
|
|
VERIFY(qr.solve(m3, &m2));
|
2009-08-22 13:13:21 +08:00
|
|
|
VERIFY_IS_APPROX(m3, m1*m2);
|
2009-08-24 12:23:35 +08:00
|
|
|
m3 = MatrixType::Random(rows,cols2);
|
|
|
|
VERIFY(!qr.solve(m3, &m2));
|
2009-08-22 13:13:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename MatrixType> void qr_invertible()
|
|
|
|
{
|
|
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
2009-08-24 12:35:42 +08:00
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
|
2009-08-22 13:13:21 +08:00
|
|
|
int size = ei_random<int>(10,50);
|
|
|
|
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
|
|
m1 = MatrixType::Random(size,size);
|
|
|
|
|
|
|
|
if (ei_is_same_type<RealScalar,float>::ret)
|
|
|
|
{
|
|
|
|
// let's build a matrix more stable to inverse
|
|
|
|
MatrixType a = MatrixType::Random(size,size*2);
|
|
|
|
m1 += a * a.adjoint();
|
|
|
|
}
|
|
|
|
|
2009-08-24 06:04:33 +08:00
|
|
|
FullPivotingHouseholderQR<MatrixType> qr(m1);
|
2009-08-24 12:23:35 +08:00
|
|
|
VERIFY(qr.isInjective());
|
|
|
|
VERIFY(qr.isInvertible());
|
|
|
|
VERIFY(qr.isSurjective());
|
|
|
|
|
2009-08-22 13:13:21 +08:00
|
|
|
m3 = MatrixType::Random(size,size);
|
2009-08-24 12:23:35 +08:00
|
|
|
VERIFY(qr.solve(m3, &m2));
|
2009-08-22 13:13:21 +08:00
|
|
|
VERIFY_IS_APPROX(m3, m1*m2);
|
2009-08-24 12:35:42 +08:00
|
|
|
|
|
|
|
// now construct a matrix with prescribed determinant
|
|
|
|
m1.setZero();
|
|
|
|
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
|
|
|
RealScalar absdet = ei_abs(m1.diagonal().prod());
|
|
|
|
m3 = qr.matrixQ(); // get a unitary
|
|
|
|
m1 = m3 * m1 * m3;
|
|
|
|
qr.compute(m1);
|
|
|
|
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
2009-08-22 13:13:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename MatrixType> void qr_verify_assert()
|
|
|
|
{
|
|
|
|
MatrixType tmp;
|
|
|
|
|
2009-08-24 06:04:33 +08:00
|
|
|
FullPivotingHouseholderQR<MatrixType> qr;
|
2009-08-22 13:13:21 +08:00
|
|
|
VERIFY_RAISES_ASSERT(qr.matrixR())
|
|
|
|
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
|
|
|
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
|
|
|
}
|
|
|
|
|
2009-08-24 06:04:33 +08:00
|
|
|
void test_qr_fullpivoting()
|
2009-08-22 13:13:21 +08:00
|
|
|
{
|
|
|
|
for(int i = 0; i < 1; i++) {
|
|
|
|
// FIXME : very weird bug here
|
|
|
|
// CALL_SUBTEST( qr(Matrix2f()) );
|
|
|
|
CALL_SUBTEST( qr<MatrixXf>() );
|
|
|
|
CALL_SUBTEST( qr<MatrixXd>() );
|
|
|
|
CALL_SUBTEST( qr<MatrixXcd>() );
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
|
|
CALL_SUBTEST( qr_invertible<MatrixXf>() );
|
|
|
|
CALL_SUBTEST( qr_invertible<MatrixXd>() );
|
|
|
|
CALL_SUBTEST( qr_invertible<MatrixXcf>() );
|
|
|
|
CALL_SUBTEST( qr_invertible<MatrixXcd>() );
|
|
|
|
}
|
|
|
|
|
|
|
|
CALL_SUBTEST(qr_verify_assert<Matrix3f>());
|
|
|
|
CALL_SUBTEST(qr_verify_assert<Matrix3d>());
|
|
|
|
CALL_SUBTEST(qr_verify_assert<MatrixXf>());
|
|
|
|
CALL_SUBTEST(qr_verify_assert<MatrixXd>());
|
|
|
|
CALL_SUBTEST(qr_verify_assert<MatrixXcf>());
|
|
|
|
CALL_SUBTEST(qr_verify_assert<MatrixXcd>());
|
|
|
|
}
|