eigen/test/array_replicate.cpp

86 lines
2.8 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType> void replicate(const MatrixType& m)
{
/* this test covers the following files:
Replicate.cpp
*/
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
typedef Matrix<Scalar, Dynamic, 1> VectorX;
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols);
VectorType v1 = VectorType::Random(rows);
MatrixX x1, x2;
VectorX vx1;
int f1 = internal::random<int>(1,10),
f2 = internal::random<int>(1,10);
x1.resize(rows*f1,cols*f2);
for(int j=0; j<f2; j++)
for(int i=0; i<f1; i++)
x1.block(i*rows,j*cols,rows,cols) = m1;
VERIFY_IS_APPROX(x1, m1.replicate(f1,f2));
x2.resize(2*rows,3*cols);
x2 << m2, m2, m2,
m2, m2, m2;
VERIFY_IS_APPROX(x2, (m2.template replicate<2,3>()));
x2.resize(rows,f1);
for (int j=0; j<f1; ++j)
x2.col(j) = v1;
VERIFY_IS_APPROX(x2, v1.rowwise().replicate(f1));
vx1.resize(rows*f2);
for (int j=0; j<f2; ++j)
vx1.segment(j*rows,rows) = v1;
VERIFY_IS_APPROX(vx1, v1.colwise().replicate(f2));
}
void test_array_replicate()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( replicate(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( replicate(Vector2f()) );
CALL_SUBTEST_3( replicate(Vector3d()) );
CALL_SUBTEST_4( replicate(Vector4f()) );
CALL_SUBTEST_5( replicate(VectorXf(16)) );
CALL_SUBTEST_6( replicate(VectorXcd(10)) );
}
}