eigen/test/eigen2support.cpp

65 lines
2.1 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN2_SUPPORT
#include "main.h"
template<typename MatrixType> void eigen2support(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m3(rows, cols);
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
// scalar addition
VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
m3 = m1;
m3.cwise() += s2;
VERIFY_IS_APPROX(m3, m1.cwise() + s2);
m3 = m1;
m3.cwise() -= s1;
VERIFY_IS_APPROX(m3, m1.cwise() - s1);
VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1)));
VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0)));
VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1)));
VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1)));
VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1)));
VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1)));
using namespace internal;
VERIFY_IS_EQUAL(ei_cos(s1), cos(s1));
VERIFY_IS_EQUAL(ei_real(s1), real(s1));
VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1));
2010-04-23 08:49:01 +08:00
m1.minor(0,0);
}
void test_eigen2support()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) );
CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) );
CALL_SUBTEST_4( eigen2support(Matrix3f()) );
CALL_SUBTEST_5( eigen2support(Matrix4d()) );
CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) );
CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) );
}
}