eigen/blas/level2_cplx_impl.h

395 lines
12 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
/** ZHEMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar);
static functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run);
func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
init = true;
}
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
if(*n==0)
return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
else make_vector(actual_y, *n) *= beta;
}
if(alpha!=Scalar(0))
{
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, actual_x, 1, actual_y, alpha);
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
/** ZHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*/
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPR performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
{
typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
static functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
init = true;
}
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* ap = reinterpret_cast<Scalar*>(pap);
RealScalar alpha = *palpha;
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, ap, x_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
{
typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
static functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run);
func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
init = true;
}
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* ap = reinterpret_cast<Scalar*>(pap);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, ap, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZHER performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
{
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
static functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
init = true;
}
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* a = reinterpret_cast<Scalar*>(pa);
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*lda<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
if(alpha==RealScalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHER2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
static functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run);
func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run);
init = true;
}
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERU performs the rank 1 operation
*
* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}