eigen/test/nullary.cpp

139 lines
4.8 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType>
bool equalsIdentity(const MatrixType& A)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Scalar zero = static_cast<Scalar>(0);
bool offDiagOK = true;
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = i+1; j < A.cols(); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
bool diagOK = (A.diagonal().array() == 1).all();
return offDiagOK && diagOK;
}
template<typename VectorType>
void testVectorType(const VectorType& base)
{
typedef typename internal::traits<VectorType>::Index Index;
typedef typename internal::traits<VectorType>::Scalar Scalar;
const Index size = base.size();
Scalar high = internal::random<Scalar>(-500,500);
Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
2010-06-08 19:29:27 +08:00
if (low>high) std::swap(low,high);
const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1));
// check whether the result yields what we expect it to do
VectorType m(base);
m.setLinSpaced(size,low,high);
VectorType n(size);
for (int i=0; i<size; ++i)
n(i) = low+i*step;
VERIFY_IS_APPROX(m,n);
// random access version
m = VectorType::LinSpaced(size,low,high);
VERIFY_IS_APPROX(m,n);
2010-10-19 15:43:54 +08:00
// Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<Scalar>::epsilon() );
// These guys sometimes fail! This is not good. Any ideas how to fix them!?
2012-03-07 22:34:39 +08:00
//VERIFY( m(m.size()-1) == high );
//VERIFY( m(0) == low );
// sequential access version
m = VectorType::LinSpaced(Sequential,size,low,high);
VERIFY_IS_APPROX(m,n);
// These guys sometimes fail! This is not good. Any ideas how to fix them!?
//VERIFY( m(m.size()-1) == high );
//VERIFY( m(0) == low );
// check whether everything works with row and col major vectors
Matrix<Scalar,Dynamic,1> row_vector(size);
Matrix<Scalar,1,Dynamic> col_vector(size);
row_vector.setLinSpaced(size,low,high);
col_vector.setLinSpaced(size,low,high);
VERIFY( row_vector.isApprox(col_vector.transpose(), NumTraits<Scalar>::epsilon()));
Matrix<Scalar,Dynamic,1> size_changer(size+50);
size_changer.setLinSpaced(size,low,high);
2010-06-08 19:29:27 +08:00
VERIFY( size_changer.size() == size );
2012-03-07 22:34:39 +08:00
typedef Matrix<Scalar,1,1> ScalarMatrix;
ScalarMatrix scalar;
scalar.setLinSpaced(1,low,high);
VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
const Index rows = m.rows();
const Index cols = m.cols();
MatrixType A;
A.setIdentity(rows, cols);
VERIFY(equalsIdentity(A));
VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
}
void test_nullary()
{
CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,300))) );
CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
CALL_SUBTEST_6( testVectorType(Vector3d()) );
CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,300))) );
CALL_SUBTEST_8( testVectorType(Vector3f()) );
CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
}
}