eigen/test/eigen2/eigen2_product_large.cpp

59 lines
2.3 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "product.h"
void test_eigen2_product_large()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( product(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
CALL_SUBTEST( product(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) );
CALL_SUBTEST( product(MatrixXi(ei_random<int>(1,320), ei_random<int>(1,320))) );
CALL_SUBTEST( product(MatrixXcf(ei_random<int>(1,50), ei_random<int>(1,50))) );
CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,320), ei_random<int>(1,320))) );
}
{
// test a specific issue in DiagonalProduct
int N = 1000000;
VectorXf v = VectorXf::Ones(N);
MatrixXf m = MatrixXf::Ones(N,3);
m = (v+v).asDiagonal() * m;
VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2));
}
{
// test deferred resizing in Matrix::operator=
MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a;
VERIFY_IS_APPROX((a = a * b), (c * b).eval());
}
{
MatrixXf mat1(10,10); mat1.setRandom();
MatrixXf mat2(32,10); mat2.setRandom();
MatrixXf result = mat1.row(2)*mat2.transpose();
VERIFY_IS_APPROX(result, (mat1.row(2)*mat2.transpose()).eval());
}
}