eigen/test/stl_iterators.cpp

282 lines
8.4 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <numeric>
#include "main.h"
template< class Iterator >
std::reverse_iterator<Iterator>
make_reverse_iterator( Iterator i )
{
return std::reverse_iterator<Iterator>(i);
}
template<typename XprType>
bool is_PointerBasedStlIterator(const PointerBasedStlIterator<XprType> &) { return true; }
template<typename XprType>
bool is_DenseStlIterator(const DenseStlIterator<XprType> &) { return true; }
template<typename Scalar, int Rows, int Cols>
void test_range_for_loop(int rows=Rows, int cols=Cols)
{
using std::begin;
using std::end;
typedef Matrix<Scalar,Rows,1> VectorType;
2018-10-03 17:56:27 +08:00
typedef Matrix<Scalar,1,Cols> RowVectorType;
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
VectorType v = VectorType::Random(rows);
const VectorType& cv(v);
ColMatrixType A = ColMatrixType::Random(rows,cols);
const ColMatrixType& cA(A);
RowMatrixType B = RowMatrixType::Random(rows,cols);
Index i, j;
VERIFY( is_PointerBasedStlIterator(v.begin()) );
VERIFY( is_PointerBasedStlIterator(v.end()) );
VERIFY( is_PointerBasedStlIterator(cv.begin()) );
VERIFY( is_PointerBasedStlIterator(cv.end()) );
j = internal::random<Index>(0,A.cols()-1);
VERIFY( is_PointerBasedStlIterator(A.col(j).begin()) );
VERIFY( is_PointerBasedStlIterator(A.col(j).end()) );
VERIFY( is_PointerBasedStlIterator(cA.col(j).begin()) );
VERIFY( is_PointerBasedStlIterator(cA.col(j).end()) );
i = internal::random<Index>(0,A.rows()-1);
VERIFY( is_PointerBasedStlIterator(A.row(i).begin()) );
VERIFY( is_PointerBasedStlIterator(A.row(i).end()) );
VERIFY( is_PointerBasedStlIterator(cA.row(i).begin()) );
VERIFY( is_PointerBasedStlIterator(cA.row(i).end()) );
VERIFY( is_PointerBasedStlIterator(A.reshaped().begin()) );
VERIFY( is_PointerBasedStlIterator(A.reshaped().end()) );
VERIFY( is_PointerBasedStlIterator(cA.reshaped().begin()) );
VERIFY( is_PointerBasedStlIterator(cA.reshaped().end()) );
2018-10-03 17:56:27 +08:00
VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().begin()) );
VERIFY( is_PointerBasedStlIterator(B.template reshaped<AutoOrder>().end()) );
VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().begin()) );
VERIFY( is_DenseStlIterator(A.template reshaped<RowMajor>().end()) );
#if EIGEN_HAS_CXX11
i = 0;
for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
j = internal::random<Index>(0,A.cols()-1);
i = 0;
for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
i = 0;
for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
i = 0;
for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
// check const_iterator
{
i = 0;
for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
i = 0;
for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
}
Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
i = 0;
for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
VectorType w(v.size());
i = 0;
for(auto& x : w) { x = v(i++); }
VERIFY_IS_EQUAL(v,w);
{
j = internal::random<Index>(0,A.cols()-1);
auto it = A.col(j).begin();
for(i=0;i<rows;++i) {
VERIFY_IS_EQUAL(it[i],A(i,j));
}
}
{
i = internal::random<Index>(0,A.rows()-1);
auto it = A.row(i).begin();
for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
}
{
j = internal::random<Index>(0,A.cols()-1);
// this would produce a dangling pointer:
// auto it = (A+2*A).col(j).begin();
// we need to name the temporary expression:
auto tmp = (A+2*A).col(j);
auto it = tmp.begin();
for(i=0;i<rows;++i) {
VERIFY_IS_APPROX(it[i],3*A(i,j));
}
}
// {
// j = internal::random<Index>(0,A.cols()-1);
// auto it = (A+2*A).col(j).begin();
// for(i=0;i<rows;++i) {
// VERIFY_IS_APPROX(it[i],3*A(i,j));
// }
// }
#endif
if(rows>=3) {
VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
VERIFY_IS_EQUAL((A.allRows().begin()+rows/2)[1], A.row(rows/2+1));
}
if(cols>=3) {
VERIFY_IS_EQUAL((A.allCols().begin()+cols/2)[1], A.col(cols/2+1));
}
if(rows>=2)
{
v(1) = v(0)-Scalar(1);
VERIFY(!std::is_sorted(begin(v),end(v)));
}
std::sort(begin(v),end(v));
VERIFY(std::is_sorted(begin(v),end(v)));
VERIFY(!std::is_sorted(make_reverse_iterator(end(v)),make_reverse_iterator(begin(v))));
// std::sort with pointer-based iterator and default increment
{
j = internal::random<Index>(0,A.cols()-1);
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
typename ColMatrixType::ColXpr Acol = A.col(j);
std::sort(begin(Acol),end(Acol));
VERIFY(std::is_sorted(Acol.cbegin(),Acol.cend()));
A.setRandom();
std::sort(A.col(j).begin(),A.col(j).end());
VERIFY(std::is_sorted(A.col(j).cbegin(),A.col(j).cend()));
A.setRandom();
}
// std::sort with pointer-based iterator and runtime increment
{
i = internal::random<Index>(0,A.rows()-1);
typename ColMatrixType::RowXpr Arow = A.row(i);
VERIFY_IS_EQUAL( std::distance(begin(Arow),end(Arow)), cols);
std::sort(begin(Arow),end(Arow));
VERIFY(std::is_sorted(Arow.cbegin(),Arow.cend()));
A.setRandom();
std::sort(A.row(i).begin(),A.row(i).end());
VERIFY(std::is_sorted(A.row(i).cbegin(),A.row(i).cend()));
A.setRandom();
}
// std::sort with generic iterator
{
auto B1 = B.reshaped();
std::sort(begin(B1),end(B1));
VERIFY(std::is_sorted(B1.cbegin(),B1.cend()));
B.setRandom();
// assertion because nested expressions are different
// std::sort(B.reshaped().begin(),B.reshaped().end());
// VERIFY(std::is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
// B.setRandom();
}
{
j = internal::random<Index>(0,A.cols()-1);
typename ColMatrixType::ColXpr Acol = A.col(j);
std::partial_sum(begin(Acol), end(Acol), begin(v));
VERIFY_IS_EQUAL(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
// inplace
std::partial_sum(begin(Acol), end(Acol), begin(Acol));
VERIFY_IS_EQUAL(v, Acol);
}
if(rows>=3)
{
// stress random access
v.setRandom();
VectorType v1 = v;
std::sort(begin(v1),end(v1));
std::nth_element(v.begin(), v.begin()+rows/2, v.end());
VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
v.setRandom();
v1 = v;
std::sort(begin(v1)+rows/2,end(v1));
std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
}
#if EIGEN_HAS_CXX11
j = 0;
for(auto c : A.allCols()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
j = 0;
for(auto c : B.allCols()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
j = 0;
for(auto c : B.allCols()) {
i = 0;
for(auto& x : c) {
VERIFY_IS_EQUAL(x, B(i,j));
x = A(i,j);
++i;
}
++j;
}
VERIFY_IS_APPROX(A,B);
B = Bc; // restore B
i = 0;
for(auto r : A.allRows()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
i = 0;
for(auto r : B.allRows()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
2018-10-03 17:56:27 +08:00
{
RowVectorType row = RowVectorType::Random(cols);
A.rowwise() = row;
VERIFY( std::all_of(A.allRows().begin(), A.allRows().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.norm(),row.norm()); }) );
VectorType col = VectorType::Random(rows);
A.colwise() = col;
VERIFY( std::all_of(A.allCols().begin(), A.allCols().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.norm(),col.norm()); }) );
}
#endif
}
EIGEN_DECLARE_TEST(stl_iterators)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( test_range_for_loop<double,2,3>() ));
CALL_SUBTEST_1(( test_range_for_loop<float,7,5>() ));
CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
CALL_SUBTEST_1(( test_range_for_loop<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
}
}