eigen/blas/level1_cplx_impl.h

142 lines
5.4 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
struct scalar_norm1_op {
typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
};
namespace Eigen {
namespace internal {
template<> struct functor_traits<scalar_norm1_op >
{
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
}
}
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__asum " << *n << " " << *incx << "\n";
Complex* x = reinterpret_cast<Complex*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}
// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).dot(vector(y,*n)));
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
return res;
}
// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
return res;
}
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1)
return vector(x,*n).stableNorm();
return vector(x,*n,*incx).stableNorm();
}
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
RealScalar c = *pc;
RealScalar s = *ps;
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
Reverse<StridedVectorType> rvx(vx);
Reverse<StridedVectorType> rvy(vy);
// TODO implement mixed real-scalar rotations
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
return 0;
}
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
RealScalar alpha = *palpha;
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}