eigen/unsupported/test/polynomialutils.cpp

114 lines
3.5 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
using namespace std;
namespace Eigen {
namespace internal {
template<int Size>
struct increment_if_fixed_size
{
enum {
ret = (Size == Dynamic) ? Dynamic : Size+1
};
};
}
}
template<typename Scalar_, int _Deg>
void realRoots_to_monicPolynomial_test(int deg)
{
typedef internal::increment_if_fixed_size<_Deg> Dim;
typedef Matrix<Scalar_,Dim::ret,1> PolynomialType;
typedef Matrix<Scalar_,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial( roots, pols );
EvalRootsType evr( deg );
for( int i=0; i<roots.size(); ++i ){
evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
bool evalToZero = evr.isZero( test_precision<Scalar_>() );
if( !evalToZero ){
cerr << evr.transpose() << endl; }
VERIFY( evalToZero );
}
template<typename Scalar_> void realRoots_to_monicPolynomial_scalar()
{
CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<Scalar_,2>(2)) );
CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<Scalar_,3>(3)) );
CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<Scalar_,4>(4)) );
CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<Scalar_,5>(5)) );
CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<Scalar_,6>(6)) );
CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<Scalar_,7>(7)) );
CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<Scalar_,17>(17)) );
CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<Scalar_,Dynamic>(
internal::random<int>(18,26) )) );
}
template<typename Scalar_, int _Deg>
void CauchyBounds(int deg)
{
typedef internal::increment_if_fixed_size<_Deg> Dim;
typedef Matrix<Scalar_,Dim::ret,1> PolynomialType;
typedef Matrix<Scalar_,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1);
EvalRootsType roots = EvalRootsType::Random(deg);
roots_to_monicPolynomial( roots, pols );
Scalar_ M = cauchy_max_bound( pols );
Scalar_ m = cauchy_min_bound( pols );
Scalar_ Max = roots.array().abs().maxCoeff();
Scalar_ min = roots.array().abs().minCoeff();
bool eval = (M >= Max) && (m <= min);
if( !eval )
{
cerr << "Roots: " << roots << endl;
cerr << "Bounds: (" << m << ", " << M << ")" << endl;
cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
}
VERIFY( eval );
}
template<typename Scalar_> void CauchyBounds_scalar()
{
CALL_SUBTEST_2( (CauchyBounds<Scalar_,2>(2)) );
CALL_SUBTEST_3( (CauchyBounds<Scalar_,3>(3)) );
CALL_SUBTEST_4( (CauchyBounds<Scalar_,4>(4)) );
CALL_SUBTEST_5( (CauchyBounds<Scalar_,5>(5)) );
CALL_SUBTEST_6( (CauchyBounds<Scalar_,6>(6)) );
CALL_SUBTEST_7( (CauchyBounds<Scalar_,7>(7)) );
CALL_SUBTEST_8( (CauchyBounds<Scalar_,17>(17)) );
CALL_SUBTEST_9( (CauchyBounds<Scalar_,Dynamic>(
internal::random<int>(18,26) )) );
}
EIGEN_DECLARE_TEST(polynomialutils)
{
for(int i = 0; i < g_repeat; i++)
{
realRoots_to_monicPolynomial_scalar<double>();
realRoots_to_monicPolynomial_scalar<float>();
CauchyBounds_scalar<double>();
CauchyBounds_scalar<float>();
}
}