eigen/test/qr.cpp

142 lines
4.9 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/QR>
template<typename MatrixType> void qr(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
2009-10-13 10:33:51 +08:00
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType a = MatrixType::Random(rows,cols);
HouseholderQR<MatrixType> qrOfA(a);
MatrixQType q = qrOfA.householderQ();
2009-10-13 10:33:51 +08:00
VERIFY_IS_UNITARY(q);
MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
}
template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
// FIXME need better way to construct trapezoid
for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
VERIFY_IS_APPROX(m1, qr.householderQ() * r);
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
2009-11-08 23:21:26 +08:00
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType> void qr_invertible()
{
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = ei_random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (ei_is_same_type<RealScalar,float>::ret)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
HouseholderQR<MatrixType> qr(m1);
m3 = MatrixType::Random(size,size);
2009-11-08 23:21:26 +08:00
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
RealScalar absdet = ei_abs(m1.diagonal().prod());
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
HouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
2009-11-08 23:21:26 +08:00
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr(MatrixXf(ei_random<int>(1,200),ei_random<int>(1,200))) );
CALL_SUBTEST_2( qr(MatrixXcd(ei_random<int>(1,200),ei_random<int>(1,200))) );
CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
}