eigen/test/mixingtypes.cpp

156 lines
5.5 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
#endif
#include "main.h"
template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
Mat_f mf(size,size);
Mat_d md(size,size);
Mat_cf mcf(size,size);
Mat_cd mcd(size,size);
Vec_f vf(size,1);
Vec_d vd(size,1);
Vec_cf vcf(size,1);
Vec_cd vcd(size,1);
mf+mf;
VERIFY_RAISES_ASSERT(mf+md);
VERIFY_RAISES_ASSERT(mf+mcf);
VERIFY_RAISES_ASSERT(vf=vd);
VERIFY_RAISES_ASSERT(vf+=vd);
VERIFY_RAISES_ASSERT(mcd=md);
vf.dot(vf);
VERIFY_RAISES_ASSERT(vd.dot(vf));
VERIFY_RAISES_ASSERT(vcf.dot(vf)); // yeah eventually we should allow this but i'm too lazy to make that change now in Dot.h
} // especially as that might be rewritten as cwise product .sum() which would make that automatic.
void mixingtypes_large(int size)
{
static const int SizeAtCompileType = Dynamic;
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
Mat_f mf(size,size);
Mat_d md(size,size);
Mat_cf mcf(size,size);
Mat_cd mcd(size,size);
Vec_f vf(size,1);
Vec_d vd(size,1);
Vec_cf vcf(size,1);
Vec_cd vcd(size,1);
mf*mf;
// FIXME large products does not allow mixing types
VERIFY_RAISES_ASSERT(md*mcd);
VERIFY_RAISES_ASSERT(mcd*md);
VERIFY_RAISES_ASSERT(mf*vcf);
VERIFY_RAISES_ASSERT(mcf*vf);
VERIFY_RAISES_ASSERT(mcf *= mf);
// VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile
VERIFY_RAISES_ASSERT(vcf = mcf*vf);
VERIFY_RAISES_ASSERT(mf*md);
VERIFY_RAISES_ASSERT(mcf*mcd);
VERIFY_RAISES_ASSERT(mcf*vcd);
VERIFY_RAISES_ASSERT(vcf = mf*vf);
}
template<int SizeAtCompileType> void mixingtypes_small()
{
int size = SizeAtCompileType;
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
Mat_f mf(size,size);
Mat_d md(size,size);
Mat_cf mcf(size,size);
Mat_cd mcd(size,size);
Vec_f vf(size,1);
Vec_d vd(size,1);
Vec_cf vcf(size,1);
Vec_cd vcd(size,1);
mf*mf;
// FIXME shall we discard those products ?
// 1) currently they work only if SizeAtCompileType is small enough
// 2) in case we vectorize complexes this might be difficult to still allow that
md*mcd;
mcd*md;
mf*vcf;
mcf*vf;
mcf *= mf;
vcd = md*vcd;
vcf = mcf*vf;
// VERIFY_RAISES_ASSERT(mf*md); // does not even compile
// VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
// VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
VERIFY_RAISES_ASSERT(vcf = mf*vf);
}
void test_mixingtypes()
{
// check that our operator new is indeed called:
CALL_SUBTEST(mixingtypes<3>());
CALL_SUBTEST(mixingtypes<4>());
CALL_SUBTEST(mixingtypes<Dynamic>(20));
CALL_SUBTEST(mixingtypes_small<4>());
CALL_SUBTEST(mixingtypes_large(20));
}