eigen/blas/chbmv.f

311 lines
9.6 KiB
FortranFixed
Raw Normal View History

SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* CHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the band matrix A is being supplied as
* follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* being supplied.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* being supplied.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry, K specifies the number of super-diagonals of the
* matrix A. K must satisfy 0 .le. K.
* Unchanged on exit.
*
* ALPHA - COMPLEX .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
* by n part of the array A must contain the upper triangular
* band part of the hermitian matrix, supplied column by
* column, with the leading diagonal of the matrix in row
* ( k + 1 ) of the array, the first super-diagonal starting at
* position 2 in row k, and so on. The top left k by k triangle
* of the array A is not referenced.
* The following program segment will transfer the upper
* triangular part of a hermitian band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = K + 1 - J
* DO 10, I = MAX( 1, J - K ), J
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
* by n part of the array A must contain the lower triangular
* band part of the hermitian matrix, supplied column by
* column, with the leading diagonal of the matrix in row 1 of
* the array, the first sub-diagonal starting at position 1 in
* row 2, and so on. The bottom right k by k triangle of the
* array A is not referenced.
* The following program segment will transfer the lower
* triangular part of a hermitian band matrix from conventional
* full matrix storage to band storage:
*
* DO 20, J = 1, N
* M = 1 - J
* DO 10, I = J, MIN( N, J + K )
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Note that the imaginary parts of the diagonal elements need
* not be set and are assumed to be zero.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( k + 1 ).
* Unchanged on exit.
*
* X - COMPLEX array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX .
* On entry, BETA specifies the scalar beta.
* Unchanged on exit.
*
* Y - COMPLEX array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,MIN,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (K.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT. (K+1)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set up the start points in X and Y.
*
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
*
* Start the operations. In this version the elements of the array A
* are accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,N
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,N
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,N
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,N
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
IF (LSAME(UPLO,'U')) THEN
*
* Form y when upper triangle of A is stored.
*
KPLUS1 = K + 1
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
L = KPLUS1 - J
DO 50 I = MAX(1,J-K),J - 1
Y(I) = Y(I) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
50 CONTINUE
Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 70 I = MAX(1,J-K),J - 1
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF (J.GT.K) THEN
KX = KX + INCX
KY = KY + INCY
END IF
80 CONTINUE
END IF
ELSE
*
* Form y when lower triangle of A is stored.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 100 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
Y(J) = Y(J) + TEMP1*REAL(A(1,J))
L = 1 - J
DO 90 I = J + 1,MIN(N,J+K)
Y(I) = Y(I) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
90 CONTINUE
Y(J) = Y(J) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
L = 1 - J
IX = JX
IY = JY
DO 110 I = J + 1,MIN(N,J+K)
IX = IX + INCX
IY = IY + INCY
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHBMV .
*
END