mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
170 lines
5.0 KiB
C
170 lines
5.0 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||
|
//
|
||
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
||
|
//
|
||
|
// Eigen is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License and a copy of the GNU General Public License along with
|
||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
#ifndef EIGEN_TESTSPARSE_H
|
||
|
|
||
|
#include "main.h"
|
||
|
|
||
|
#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC
|
||
|
#include <tr1/unordered_map>
|
||
|
#define EIGEN_UNORDERED_MAP_SUPPORT
|
||
|
namespace std {
|
||
|
using std::tr1::unordered_map;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
||
|
#include <google/sparse_hash_map>
|
||
|
#endif
|
||
|
|
||
|
#include <Eigen/Cholesky>
|
||
|
#include <Eigen/LU>
|
||
|
#include <Eigen/Sparse>
|
||
|
|
||
|
enum {
|
||
|
ForceNonZeroDiag = 1,
|
||
|
MakeLowerTriangular = 2,
|
||
|
MakeUpperTriangular = 4,
|
||
|
ForceRealDiag = 8
|
||
|
};
|
||
|
|
||
|
/* Initializes both a sparse and dense matrix with same random values,
|
||
|
* and a ratio of \a density non zero entries.
|
||
|
* \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
|
||
|
* allowing to control the shape of the matrix.
|
||
|
* \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
|
||
|
* and zero coefficients respectively.
|
||
|
*/
|
||
|
template<typename Scalar> void
|
||
|
initSparse(double density,
|
||
|
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
||
|
SparseMatrix<Scalar>& sparseMat,
|
||
|
int flags = 0,
|
||
|
std::vector<Vector2i>* zeroCoords = 0,
|
||
|
std::vector<Vector2i>* nonzeroCoords = 0)
|
||
|
{
|
||
|
sparseMat.startFill(int(refMat.rows()*refMat.cols()*density));
|
||
|
for(int j=0; j<refMat.cols(); j++)
|
||
|
{
|
||
|
for(int i=0; i<refMat.rows(); i++)
|
||
|
{
|
||
|
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
||
|
if ((flags&ForceNonZeroDiag) && (i==j))
|
||
|
{
|
||
|
v = ei_random<Scalar>()*Scalar(3.);
|
||
|
v = v*v + Scalar(5.);
|
||
|
}
|
||
|
if ((flags & MakeLowerTriangular) && j>i)
|
||
|
v = Scalar(0);
|
||
|
else if ((flags & MakeUpperTriangular) && j<i)
|
||
|
v = Scalar(0);
|
||
|
|
||
|
if ((flags&ForceRealDiag) && (i==j))
|
||
|
v = ei_real(v);
|
||
|
|
||
|
if (v!=Scalar(0))
|
||
|
{
|
||
|
sparseMat.fill(i,j) = v;
|
||
|
if (nonzeroCoords)
|
||
|
nonzeroCoords->push_back(Vector2i(i,j));
|
||
|
}
|
||
|
else if (zeroCoords)
|
||
|
{
|
||
|
zeroCoords->push_back(Vector2i(i,j));
|
||
|
}
|
||
|
refMat(i,j) = v;
|
||
|
}
|
||
|
}
|
||
|
sparseMat.endFill();
|
||
|
}
|
||
|
|
||
|
template<typename Scalar> void
|
||
|
initSparse(double density,
|
||
|
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
||
|
DynamicSparseMatrix<Scalar>& sparseMat,
|
||
|
int flags = 0,
|
||
|
std::vector<Vector2i>* zeroCoords = 0,
|
||
|
std::vector<Vector2i>* nonzeroCoords = 0)
|
||
|
{
|
||
|
sparseMat.startFill(int(refMat.rows()*refMat.cols()*density));
|
||
|
for(int j=0; j<refMat.cols(); j++)
|
||
|
{
|
||
|
for(int i=0; i<refMat.rows(); i++)
|
||
|
{
|
||
|
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
||
|
if ((flags&ForceNonZeroDiag) && (i==j))
|
||
|
{
|
||
|
v = ei_random<Scalar>()*Scalar(3.);
|
||
|
v = v*v + Scalar(5.);
|
||
|
}
|
||
|
if ((flags & MakeLowerTriangular) && j>i)
|
||
|
v = Scalar(0);
|
||
|
else if ((flags & MakeUpperTriangular) && j<i)
|
||
|
v = Scalar(0);
|
||
|
|
||
|
if ((flags&ForceRealDiag) && (i==j))
|
||
|
v = ei_real(v);
|
||
|
|
||
|
if (v!=Scalar(0))
|
||
|
{
|
||
|
sparseMat.fill(i,j) = v;
|
||
|
if (nonzeroCoords)
|
||
|
nonzeroCoords->push_back(Vector2i(i,j));
|
||
|
}
|
||
|
else if (zeroCoords)
|
||
|
{
|
||
|
zeroCoords->push_back(Vector2i(i,j));
|
||
|
}
|
||
|
refMat(i,j) = v;
|
||
|
}
|
||
|
}
|
||
|
sparseMat.endFill();
|
||
|
}
|
||
|
|
||
|
template<typename Scalar> void
|
||
|
initSparse(double density,
|
||
|
Matrix<Scalar,Dynamic,1>& refVec,
|
||
|
SparseVector<Scalar>& sparseVec,
|
||
|
std::vector<int>* zeroCoords = 0,
|
||
|
std::vector<int>* nonzeroCoords = 0)
|
||
|
{
|
||
|
sparseVec.reserve(int(refVec.size()*density));
|
||
|
sparseVec.setZero();
|
||
|
for(int i=0; i<refVec.size(); i++)
|
||
|
{
|
||
|
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
||
|
if (v!=Scalar(0))
|
||
|
{
|
||
|
sparseVec.fill(i) = v;
|
||
|
if (nonzeroCoords)
|
||
|
nonzeroCoords->push_back(i);
|
||
|
}
|
||
|
else if (zeroCoords)
|
||
|
zeroCoords->push_back(i);
|
||
|
refVec[i] = v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // EIGEN_TESTSPARSE_H
|