2009-05-06 04:46:55 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
|
|
//
|
|
|
|
// Eigen is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 3 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Alternatively, you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU General Public License as
|
|
|
|
// published by the Free Software Foundation; either version 2 of
|
|
|
|
// the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License and a copy of the GNU General Public License along with
|
|
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
#include "main.h"
|
2009-05-09 11:41:17 +08:00
|
|
|
#include <Eigen/StdVector>
|
2009-05-06 04:46:55 +08:00
|
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
|
|
|
|
double binom(int n, int k)
|
|
|
|
{
|
|
|
|
double res = 1;
|
|
|
|
for (int i=0; i<k; i++)
|
|
|
|
res = res * (n-k+i+1) / (i+1);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
void test2dRotation()
|
|
|
|
{
|
|
|
|
Matrix2d A, B, C;
|
|
|
|
double angle;
|
|
|
|
|
|
|
|
for (int i=0; i<=20; i++)
|
|
|
|
{
|
|
|
|
angle = pow(10, i / 5. - 2);
|
|
|
|
A << 0, angle, -angle, 0;
|
|
|
|
B << cos(angle), sin(angle), -sin(angle), cos(angle);
|
|
|
|
ei_matrix_exponential(A, &C);
|
|
|
|
VERIFY(C.isApprox(B, 1e-14));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void testPascal()
|
|
|
|
{
|
|
|
|
for (int size=1; size<20; size++)
|
|
|
|
{
|
|
|
|
MatrixXd A(size,size), B(size,size), C(size,size);
|
|
|
|
A.setZero();
|
|
|
|
for (int i=0; i<size-1; i++)
|
|
|
|
A(i+1,i) = i+1;
|
|
|
|
B.setZero();
|
|
|
|
for (int i=0; i<size; i++)
|
|
|
|
for (int j=0; j<=i; j++)
|
|
|
|
B(i,j) = binom(i,j);
|
|
|
|
ei_matrix_exponential(A, &C);
|
|
|
|
VERIFY(C.isApprox(B, 1e-14));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename MatrixType> void randomTest(const MatrixType& m)
|
|
|
|
{
|
|
|
|
/* this test covers the following files:
|
|
|
|
Inverse.h
|
|
|
|
*/
|
|
|
|
int rows = m.rows();
|
|
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1(rows, cols), m2(rows, cols), m3(rows, cols),
|
|
|
|
identity = MatrixType::Identity(rows, rows);
|
|
|
|
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
|
|
m1 = MatrixType::Random(rows, cols);
|
|
|
|
ei_matrix_exponential(m1, &m2);
|
|
|
|
ei_matrix_exponential(-m1, &m3);
|
|
|
|
VERIFY(identity.isApprox(m2 * m3, 1e-13));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_matrixExponential()
|
|
|
|
{
|
|
|
|
CALL_SUBTEST(test2dRotation());
|
|
|
|
CALL_SUBTEST(testPascal());
|
|
|
|
CALL_SUBTEST(randomTest(Matrix2d()));
|
|
|
|
CALL_SUBTEST(randomTest(Matrix3d()));
|
|
|
|
CALL_SUBTEST(randomTest(Matrix4d()));
|
|
|
|
CALL_SUBTEST(randomTest(MatrixXd(8,8)));
|
|
|
|
}
|