eigen/test/cholesky.cpp

291 lines
9.3 KiB
C++
Raw Normal View History

2008-04-27 18:57:32 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
2008-04-27 18:57:32 +08:00
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
2008-04-27 18:57:32 +08:00
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
2009-11-04 00:34:45 +08:00
#ifndef EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_NO_ASSERTION_CHECKING
2009-11-04 00:34:45 +08:00
#endif
static int nb_temporaries;
2010-12-26 06:01:01 +08:00
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { if(size!=0) nb_temporaries++; }
2008-04-27 18:57:32 +08:00
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/QR>
2008-04-27 18:57:32 +08:00
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
nb_temporaries = 0; \
XPR; \
if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
VERIFY( (#XPR) && nb_temporaries==N ); \
}
#ifdef HAS_GSL
#include "gsl_helper.h"
#endif
2008-04-27 18:57:32 +08:00
template<typename MatrixType> void cholesky(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
2008-04-27 18:57:32 +08:00
/* this test covers the following files:
LLT.h LDLT.h
2008-04-27 18:57:32 +08:00
*/
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
2008-04-27 18:57:32 +08:00
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
2008-04-27 18:57:32 +08:00
MatrixType a0 = MatrixType::Random(rows,cols);
VectorType vecB = VectorType::Random(rows), vecX(rows);
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
SquareMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
for (int k=0; k<3; ++k)
{
MatrixType a1 = MatrixType::Random(rows,cols);
symm += a1 * a1.adjoint();
}
SquareMatrixType symmUp = symm.template triangularView<Upper>();
SquareMatrixType symmLo = symm.template triangularView<Lower>();
// to test if really Cholesky only uses the upper triangular part, uncomment the following
// FIXME: currently that fails !!
//symm.template part<StrictlyLower>().setZero();
#ifdef HAS_GSL
// if (internal::is_same<RealScalar,double>::value)
// {
// typedef GslTraits<Scalar> Gsl;
// typename Gsl::Matrix gMatA=0, gSymm=0;
// typename Gsl::Vector gVecB=0, gVecX=0;
// convert<MatrixType>(symm, gSymm);
// convert<MatrixType>(symm, gMatA);
// convert<VectorType>(vecB, gVecB);
// convert<VectorType>(vecB, gVecX);
// Gsl::cholesky(gMatA);
// Gsl::cholesky_solve(gMatA, gVecB, gVecX);
// VectorType vecX(rows), _vecX, _vecB;
// convert(gVecX, _vecX);
// symm.llt().solve(vecB, &vecX);
// Gsl::prod(gSymm, gVecX, gVecB);
// convert(gVecB, _vecB);
// // test gsl itself !
// VERIFY_IS_APPROX(vecB, _vecB);
// VERIFY_IS_APPROX(vecX, _vecX);
2009-09-07 18:46:16 +08:00
//
// Gsl::free(gMatA);
// Gsl::free(gSymm);
// Gsl::free(gVecB);
// Gsl::free(gVecX);
// }
#endif
2008-04-27 18:57:32 +08:00
{
LLT<SquareMatrixType,Lower> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
vecX = chollo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = chollo.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
// test the upper mode
LLT<SquareMatrixType,Upper> cholup(symmUp);
VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
vecX = cholup.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = cholup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
MatrixType neg = -symmLo;
chollo.compute(neg);
VERIFY(chollo.info()==NumericalIssue);
}
// LDLT
{
int sign = internal::random<int>()%2 ? 1 : -1;
if(sign == -1)
{
symm = -symm; // test a negative matrix
}
SquareMatrixType symmUp = symm.template triangularView<Upper>();
SquareMatrixType symmLo = symm.template triangularView<Lower>();
2010-06-09 19:18:10 +08:00
LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = ldltlo.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
2010-06-09 19:18:10 +08:00
LDLT<SquareMatrixType,Upper> ldltup(symmUp);
VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
vecX = ldltup.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = ldltup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
if(MatrixType::RowsAtCompileTime==Dynamic)
{
// note : each inplace permutation requires a small temporary vector (mask)
// check inplace solve
matX = matB;
VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
matX = matB;
VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
}
}
2010-09-06 17:51:42 +08:00
// test some special use cases of SelfCwiseBinaryOp:
MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols);
m2 = m1;
m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
2008-04-27 18:57:32 +08:00
}
2010-07-13 22:03:49 +08:00
template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
{
// classic test
cholesky(m);
// test mixing real/scalar types
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealMatrixType a0 = RealMatrixType::Random(rows,cols);
VectorType vecB = VectorType::Random(rows), vecX(rows);
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
RealMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
for (int k=0; k<3; ++k)
{
RealMatrixType a1 = RealMatrixType::Random(rows,cols);
symm += a1 * a1.adjoint();
}
{
RealMatrixType symmLo = symm.template triangularView<Lower>();
LLT<RealMatrixType,Lower> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
vecX = chollo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
// matX = chollo.solve(matB);
// VERIFY_IS_APPROX(symm * matX, matB);
}
// LDLT
{
int sign = internal::random<int>()%2 ? 1 : -1;
2010-07-13 22:03:49 +08:00
if(sign == -1)
{
symm = -symm; // test a negative matrix
}
RealMatrixType symmLo = symm.template triangularView<Lower>();
LDLT<RealMatrixType,Lower> ldltlo(symmLo);
VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
// matX = ldltlo.solve(matB);
// VERIFY_IS_APPROX(symm * matX, matB);
}
}
template<typename MatrixType> void cholesky_verify_assert()
{
MatrixType tmp;
LLT<MatrixType> llt;
VERIFY_RAISES_ASSERT(llt.matrixL())
VERIFY_RAISES_ASSERT(llt.matrixU())
VERIFY_RAISES_ASSERT(llt.solve(tmp))
VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))
LDLT<MatrixType> ldlt;
VERIFY_RAISES_ASSERT(ldlt.matrixL())
VERIFY_RAISES_ASSERT(ldlt.permutationP())
VERIFY_RAISES_ASSERT(ldlt.vectorD())
VERIFY_RAISES_ASSERT(ldlt.isPositive())
VERIFY_RAISES_ASSERT(ldlt.isNegative())
VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp))
}
void test_cholesky()
2008-04-27 18:57:32 +08:00
{
2010-07-13 22:03:49 +08:00
int s;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
CALL_SUBTEST_3( cholesky(Matrix2d()) );
CALL_SUBTEST_4( cholesky(Matrix3f()) );
CALL_SUBTEST_5( cholesky(Matrix4d()) );
s = internal::random<int>(1,200);
2010-07-13 22:03:49 +08:00
CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) );
s = internal::random<int>(1,100);
2010-07-13 22:03:49 +08:00
CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
}
CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() );
CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );
// Test problem size constructors
CALL_SUBTEST_9( LLT<MatrixXf>(10) );
CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
2008-04-27 18:57:32 +08:00
}