mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
245 lines
5.8 KiB
C++
245 lines
5.8 KiB
C++
|
|
||
|
#include <Eigen/Geometry>
|
||
|
#include <bench/BenchTimer.h>
|
||
|
using namespace Eigen;
|
||
|
using namespace std;
|
||
|
|
||
|
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q nlerp(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
return Q((a.coeffs() * (1.0-t) + b.coeffs() * t).normalized());
|
||
|
}
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q slerp_eigen(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
return a.slerp(t,b);
|
||
|
}
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q slerp_legacy(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
typedef typename Q::Scalar Scalar;
|
||
|
static const Scalar one = Scalar(1) - dummy_precision<Scalar>();
|
||
|
Scalar d = a.dot(b);
|
||
|
Scalar absD = ei_abs(d);
|
||
|
if (absD>=one)
|
||
|
return a;
|
||
|
|
||
|
// theta is the angle between the 2 quaternions
|
||
|
Scalar theta = std::acos(absD);
|
||
|
Scalar sinTheta = ei_sin(theta);
|
||
|
|
||
|
Scalar scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||
|
Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
|
||
|
if (d<0)
|
||
|
scale1 = -scale1;
|
||
|
|
||
|
return Q(scale0 * a.coeffs() + scale1 * b.coeffs());
|
||
|
}
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q slerp_legacy_nlerp(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
typedef typename Q::Scalar Scalar;
|
||
|
static const Scalar one = Scalar(1) - epsilon<Scalar>();
|
||
|
Scalar d = a.dot(b);
|
||
|
Scalar absD = ei_abs(d);
|
||
|
|
||
|
Scalar scale0;
|
||
|
Scalar scale1;
|
||
|
|
||
|
if (absD>=one)
|
||
|
{
|
||
|
scale0 = Scalar(1) - t;
|
||
|
scale1 = t;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// theta is the angle between the 2 quaternions
|
||
|
Scalar theta = std::acos(absD);
|
||
|
Scalar sinTheta = ei_sin(theta);
|
||
|
|
||
|
scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||
|
scale1 = ei_sin( ( t * theta) ) / sinTheta;
|
||
|
if (d<0)
|
||
|
scale1 = -scale1;
|
||
|
}
|
||
|
|
||
|
return Q(scale0 * a.coeffs() + scale1 * b.coeffs());
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
inline T sin_over_x(T x)
|
||
|
{
|
||
|
if (T(1) + x*x == T(1))
|
||
|
return T(1);
|
||
|
else
|
||
|
return std::sin(x)/x;
|
||
|
}
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q slerp_rw(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
typedef typename Q::Scalar Scalar;
|
||
|
|
||
|
Scalar d = a.dot(b);
|
||
|
Scalar theta;
|
||
|
if (d<0.0)
|
||
|
theta = /*M_PI -*/ Scalar(2)*std::asin( (a.coeffs()+b.coeffs()).norm()/2 );
|
||
|
else
|
||
|
theta = Scalar(2)*std::asin( (a.coeffs()-b.coeffs()).norm()/2 );
|
||
|
|
||
|
// theta is the angle between the 2 quaternions
|
||
|
// Scalar theta = std::acos(absD);
|
||
|
Scalar sinOverTheta = sin_over_x(theta);
|
||
|
|
||
|
Scalar scale0 = (Scalar(1)-t)*sin_over_x( ( Scalar(1) - t ) * theta) / sinOverTheta;
|
||
|
Scalar scale1 = t * sin_over_x( ( t * theta) ) / sinOverTheta;
|
||
|
if (d<0)
|
||
|
scale1 = -scale1;
|
||
|
|
||
|
return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs());
|
||
|
}
|
||
|
|
||
|
template<typename Q>
|
||
|
EIGEN_DONT_INLINE Q slerp_gael(const Q& a, const Q& b, typename Q::Scalar t)
|
||
|
{
|
||
|
typedef typename Q::Scalar Scalar;
|
||
|
|
||
|
Scalar d = a.dot(b);
|
||
|
Scalar theta;
|
||
|
// theta = Scalar(2) * atan2((a.coeffs()-b.coeffs()).norm(),(a.coeffs()+b.coeffs()).norm());
|
||
|
// if (d<0.0)
|
||
|
// theta = M_PI-theta;
|
||
|
|
||
|
if (d<0.0)
|
||
|
theta = /*M_PI -*/ Scalar(2)*std::asin( (-a.coeffs()-b.coeffs()).norm()/2 );
|
||
|
else
|
||
|
theta = Scalar(2)*std::asin( (a.coeffs()-b.coeffs()).norm()/2 );
|
||
|
|
||
|
|
||
|
Scalar scale0;
|
||
|
Scalar scale1;
|
||
|
if(theta*theta-Scalar(6)==-Scalar(6))
|
||
|
{
|
||
|
scale0 = Scalar(1) - t;
|
||
|
scale1 = t;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Scalar sinTheta = std::sin(theta);
|
||
|
scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||
|
scale1 = ei_sin( ( t * theta) ) / sinTheta;
|
||
|
if (d<0)
|
||
|
scale1 = -scale1;
|
||
|
}
|
||
|
|
||
|
return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs());
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
typedef double RefScalar;
|
||
|
typedef float TestScalar;
|
||
|
|
||
|
typedef Quaternion<RefScalar> Qd;
|
||
|
typedef Quaternion<TestScalar> Qf;
|
||
|
|
||
|
unsigned int g_seed = (unsigned int) time(NULL);
|
||
|
std::cout << g_seed << "\n";
|
||
|
// g_seed = 1259932496;
|
||
|
srand(g_seed);
|
||
|
|
||
|
Matrix<RefScalar,Dynamic,1> maxerr(7);
|
||
|
maxerr.setZero();
|
||
|
|
||
|
Matrix<RefScalar,Dynamic,1> avgerr(7);
|
||
|
avgerr.setZero();
|
||
|
|
||
|
cout << "double=>float=>double nlerp eigen legacy(snap) legacy(nlerp) rightway gael's criteria\n";
|
||
|
|
||
|
int rep = 100;
|
||
|
int iters = 40;
|
||
|
for (int w=0; w<rep; ++w)
|
||
|
{
|
||
|
Qf a, b;
|
||
|
a.coeffs().setRandom();
|
||
|
a.normalize();
|
||
|
b.coeffs().setRandom();
|
||
|
b.normalize();
|
||
|
|
||
|
Qf c[6];
|
||
|
|
||
|
Qd ar(a.cast<RefScalar>());
|
||
|
Qd br(b.cast<RefScalar>());
|
||
|
Qd cr;
|
||
|
|
||
|
|
||
|
|
||
|
cout.precision(8);
|
||
|
cout << std::scientific;
|
||
|
for (int i=0; i<iters; ++i)
|
||
|
{
|
||
|
RefScalar t = 0.65;
|
||
|
cr = slerp_rw(ar,br,t);
|
||
|
|
||
|
Qf refc = cr.cast<TestScalar>();
|
||
|
c[0] = nlerp(a,b,t);
|
||
|
c[1] = slerp_eigen(a,b,t);
|
||
|
c[2] = slerp_legacy(a,b,t);
|
||
|
c[3] = slerp_legacy_nlerp(a,b,t);
|
||
|
c[4] = slerp_rw(a,b,t);
|
||
|
c[5] = slerp_gael(a,b,t);
|
||
|
|
||
|
VectorXd err(7);
|
||
|
err[0] = (cr.coeffs()-refc.cast<RefScalar>().coeffs()).norm();
|
||
|
// std::cout << err[0] << " ";
|
||
|
for (int k=0; k<6; ++k)
|
||
|
{
|
||
|
err[k+1] = (c[k].coeffs()-refc.coeffs()).norm();
|
||
|
// std::cout << err[k+1] << " ";
|
||
|
}
|
||
|
maxerr = maxerr.cwise().max(err);
|
||
|
avgerr += err;
|
||
|
// std::cout << "\n";
|
||
|
b = cr.cast<TestScalar>();
|
||
|
br = cr;
|
||
|
}
|
||
|
// std::cout << "\n";
|
||
|
}
|
||
|
avgerr /= RefScalar(rep*iters);
|
||
|
cout << "\n\nAccuracy:\n"
|
||
|
<< " max: " << maxerr.transpose() << "\n";
|
||
|
cout << " avg: " << avgerr.transpose() << "\n";
|
||
|
|
||
|
// perf bench
|
||
|
Quaternionf a,b;
|
||
|
a.coeffs().setRandom();
|
||
|
a.normalize();
|
||
|
b.coeffs().setRandom();
|
||
|
b.normalize();
|
||
|
//b = a;
|
||
|
float s = 0.65;
|
||
|
|
||
|
#define BENCH(FUNC) {\
|
||
|
BenchTimer t; \
|
||
|
for(int k=0; k<2; ++k) {\
|
||
|
t.start(); \
|
||
|
for(int i=0; i<1000000; ++i) \
|
||
|
FUNC(a,b,s); \
|
||
|
t.stop(); \
|
||
|
} \
|
||
|
cout << " " << #FUNC << " => \t " << t.value() << "s\n"; \
|
||
|
}
|
||
|
|
||
|
cout << "\nSpeed:\n" << std::fixed;
|
||
|
BENCH(nlerp);
|
||
|
BENCH(slerp_eigen);
|
||
|
BENCH(slerp_legacy);
|
||
|
BENCH(slerp_legacy_nlerp);
|
||
|
BENCH(slerp_rw);
|
||
|
BENCH(slerp_gael);
|
||
|
}
|