2017-01-16 21:58:49 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2015
|
|
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
|
|
// Contact: <eigen@codeplay.com>
|
|
|
|
//
|
|
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
|
|
#define EIGEN_TEST_NO_COMPLEX
|
2018-07-17 20:46:15 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
2017-01-16 21:58:49 +08:00
|
|
|
#define EIGEN_USE_SYCL
|
|
|
|
|
|
|
|
#include "main.h"
|
|
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
2019-11-28 18:08:54 +08:00
|
|
|
static void test_simple_reverse(const Eigen::SyclDevice& sycl_device) {
|
2017-02-01 23:29:53 +08:00
|
|
|
IndexType dim1 = 2;
|
|
|
|
IndexType dim2 = 3;
|
|
|
|
IndexType dim3 = 5;
|
|
|
|
IndexType dim4 = 7;
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}};
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> reversed_tensor(tensorRange);
|
2017-01-16 21:58:49 +08:00
|
|
|
tensor.setRandom();
|
|
|
|
|
|
|
|
array<bool, 4> dim_rev;
|
|
|
|
dim_rev[0] = false;
|
|
|
|
dim_rev[1] = true;
|
|
|
|
dim_rev[2] = true;
|
|
|
|
dim_rev[3] = false;
|
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(
|
|
|
|
sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType)));
|
|
|
|
DataType* gpu_out_data = static_cast<DataType*>(sycl_device.allocate(
|
|
|
|
reversed_tensor.dimensions().TotalSize() * sizeof(DataType)));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data,
|
|
|
|
tensorRange);
|
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu(gpu_out_data,
|
|
|
|
tensorRange);
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyHostToDevice(
|
|
|
|
gpu_in_data, tensor.data(),
|
|
|
|
(tensor.dimensions().TotalSize()) * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
reversed_tensor.data(), gpu_out_data,
|
|
|
|
reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 2; ++i) {
|
|
|
|
for (IndexType j = 0; j < 3; ++j) {
|
|
|
|
for (IndexType k = 0; k < 5; ++k) {
|
|
|
|
for (IndexType l = 0; l < 7; ++l) {
|
2019-11-28 18:08:54 +08:00
|
|
|
VERIFY_IS_EQUAL(tensor(i, j, k, l),
|
|
|
|
reversed_tensor(i, 2 - j, 4 - k, l));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dim_rev[0] = true;
|
|
|
|
dim_rev[1] = false;
|
|
|
|
dim_rev[2] = false;
|
|
|
|
dim_rev[3] = false;
|
|
|
|
|
|
|
|
out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
reversed_tensor.data(), gpu_out_data,
|
|
|
|
reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 2; ++i) {
|
|
|
|
for (IndexType j = 0; j < 3; ++j) {
|
|
|
|
for (IndexType k = 0; k < 5; ++k) {
|
|
|
|
for (IndexType l = 0; l < 7; ++l) {
|
2019-11-28 18:08:54 +08:00
|
|
|
VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, l));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dim_rev[0] = true;
|
|
|
|
dim_rev[1] = false;
|
|
|
|
dim_rev[2] = false;
|
|
|
|
dim_rev[3] = true;
|
|
|
|
out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
reversed_tensor.data(), gpu_out_data,
|
|
|
|
reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 2; ++i) {
|
|
|
|
for (IndexType j = 0; j < 3; ++j) {
|
|
|
|
for (IndexType k = 0; k < 5; ++k) {
|
|
|
|
for (IndexType l = 0; l < 7; ++l) {
|
2019-11-28 18:08:54 +08:00
|
|
|
VERIFY_IS_EQUAL(tensor(i, j, k, l),
|
|
|
|
reversed_tensor(1 - i, j, k, 6 - l));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
|
|
sycl_device.deallocate(gpu_out_data);
|
|
|
|
}
|
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
2019-11-28 18:08:54 +08:00
|
|
|
static void test_expr_reverse(const Eigen::SyclDevice& sycl_device,
|
|
|
|
bool LValue) {
|
2017-02-01 23:29:53 +08:00
|
|
|
IndexType dim1 = 2;
|
|
|
|
IndexType dim2 = 3;
|
|
|
|
IndexType dim3 = 5;
|
|
|
|
IndexType dim4 = 7;
|
|
|
|
|
|
|
|
array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}};
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> expected(tensorRange);
|
|
|
|
Tensor<DataType, 4, DataLayout, IndexType> result(tensorRange);
|
2017-01-16 21:58:49 +08:00
|
|
|
tensor.setRandom();
|
|
|
|
|
|
|
|
array<bool, 4> dim_rev;
|
|
|
|
dim_rev[0] = false;
|
|
|
|
dim_rev[1] = true;
|
|
|
|
dim_rev[2] = false;
|
|
|
|
dim_rev[3] = true;
|
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
DataType* gpu_in_data = static_cast<DataType*>(
|
|
|
|
sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType)));
|
|
|
|
DataType* gpu_out_data_expected = static_cast<DataType*>(sycl_device.allocate(
|
|
|
|
expected.dimensions().TotalSize() * sizeof(DataType)));
|
|
|
|
DataType* gpu_out_data_result = static_cast<DataType*>(
|
|
|
|
sycl_device.allocate(result.dimensions().TotalSize() * sizeof(DataType)));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data,
|
|
|
|
tensorRange);
|
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_expected(
|
|
|
|
gpu_out_data_expected, tensorRange);
|
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_result(
|
|
|
|
gpu_out_data_result, tensorRange);
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyHostToDevice(
|
|
|
|
gpu_in_data, tensor.data(),
|
|
|
|
(tensor.dimensions().TotalSize()) * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
|
|
|
if (LValue) {
|
|
|
|
out_gpu_expected.reverse(dim_rev).device(sycl_device) = in_gpu;
|
|
|
|
} else {
|
|
|
|
out_gpu_expected.device(sycl_device) = in_gpu.reverse(dim_rev);
|
|
|
|
}
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
expected.data(), gpu_out_data_expected,
|
|
|
|
expected.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
array<IndexType, 4> src_slice_dim;
|
2017-01-16 21:58:49 +08:00
|
|
|
src_slice_dim[0] = 2;
|
|
|
|
src_slice_dim[1] = 3;
|
|
|
|
src_slice_dim[2] = 1;
|
|
|
|
src_slice_dim[3] = 7;
|
2017-02-01 23:29:53 +08:00
|
|
|
array<IndexType, 4> src_slice_start;
|
2017-01-16 21:58:49 +08:00
|
|
|
src_slice_start[0] = 0;
|
|
|
|
src_slice_start[1] = 0;
|
|
|
|
src_slice_start[2] = 0;
|
|
|
|
src_slice_start[3] = 0;
|
2017-02-01 23:29:53 +08:00
|
|
|
array<IndexType, 4> dst_slice_dim = src_slice_dim;
|
|
|
|
array<IndexType, 4> dst_slice_start = src_slice_start;
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 5; ++i) {
|
2017-01-16 21:58:49 +08:00
|
|
|
if (LValue) {
|
2019-11-28 18:08:54 +08:00
|
|
|
out_gpu_result.slice(dst_slice_start, dst_slice_dim)
|
|
|
|
.reverse(dim_rev)
|
|
|
|
.device(sycl_device) = in_gpu.slice(src_slice_start, src_slice_dim);
|
2017-01-16 21:58:49 +08:00
|
|
|
} else {
|
|
|
|
out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) =
|
|
|
|
in_gpu.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
|
|
|
|
}
|
|
|
|
src_slice_start[2] += 1;
|
|
|
|
dst_slice_start[2] += 1;
|
|
|
|
}
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
result.data(), gpu_out_data_result,
|
|
|
|
result.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < expected.dimension(0); ++i) {
|
|
|
|
for (IndexType j = 0; j < expected.dimension(1); ++j) {
|
|
|
|
for (IndexType k = 0; k < expected.dimension(2); ++k) {
|
|
|
|
for (IndexType l = 0; l < expected.dimension(3); ++l) {
|
2019-11-28 18:08:54 +08:00
|
|
|
VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dst_slice_start[2] = 0;
|
|
|
|
result.setRandom();
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyHostToDevice(
|
|
|
|
gpu_out_data_result, result.data(),
|
|
|
|
(result.dimensions().TotalSize()) * sizeof(DataType));
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < 5; ++i) {
|
2019-11-28 18:08:54 +08:00
|
|
|
if (LValue) {
|
|
|
|
out_gpu_result.slice(dst_slice_start, dst_slice_dim)
|
|
|
|
.reverse(dim_rev)
|
|
|
|
.device(sycl_device) = in_gpu.slice(dst_slice_start, dst_slice_dim);
|
|
|
|
} else {
|
|
|
|
out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) =
|
|
|
|
in_gpu.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
|
|
|
|
}
|
2017-01-16 21:58:49 +08:00
|
|
|
dst_slice_start[2] += 1;
|
|
|
|
}
|
2019-11-28 18:08:54 +08:00
|
|
|
sycl_device.memcpyDeviceToHost(
|
|
|
|
result.data(), gpu_out_data_result,
|
|
|
|
result.dimensions().TotalSize() * sizeof(DataType));
|
2017-01-16 21:58:49 +08:00
|
|
|
|
2017-02-01 23:29:53 +08:00
|
|
|
for (IndexType i = 0; i < expected.dimension(0); ++i) {
|
|
|
|
for (IndexType j = 0; j < expected.dimension(1); ++j) {
|
|
|
|
for (IndexType k = 0; k < expected.dimension(2); ++k) {
|
|
|
|
for (IndexType l = 0; l < expected.dimension(3); ++l) {
|
2019-11-28 18:08:54 +08:00
|
|
|
VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-28 18:08:54 +08:00
|
|
|
template <typename DataType>
|
|
|
|
void sycl_reverse_test_per_device(const cl::sycl::device& d) {
|
2017-01-16 21:58:49 +08:00
|
|
|
QueueInterface queueInterface(d);
|
|
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
2017-02-01 23:29:53 +08:00
|
|
|
test_simple_reverse<DataType, RowMajor, int64_t>(sycl_device);
|
|
|
|
test_simple_reverse<DataType, ColMajor, int64_t>(sycl_device);
|
|
|
|
test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, false);
|
|
|
|
test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, false);
|
|
|
|
test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, true);
|
|
|
|
test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, true);
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
2018-07-17 20:46:15 +08:00
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_reverse_sycl) {
|
2019-11-28 18:08:54 +08:00
|
|
|
for (const auto& device : Eigen::get_sycl_supported_devices()) {
|
|
|
|
std::cout << "Running on "
|
|
|
|
<< device.get_info<cl::sycl::info::device::name>() << std::endl;
|
|
|
|
CALL_SUBTEST_1(sycl_reverse_test_per_device<short>(device));
|
|
|
|
CALL_SUBTEST_2(sycl_reverse_test_per_device<int>(device));
|
|
|
|
CALL_SUBTEST_3(sycl_reverse_test_per_device<unsigned int>(device));
|
|
|
|
#ifdef EIGEN_SYCL_DOUBLE_SUPPORT
|
|
|
|
CALL_SUBTEST_4(sycl_reverse_test_per_device<double>(device));
|
|
|
|
#endif
|
|
|
|
CALL_SUBTEST_5(sycl_reverse_test_per_device<float>(device));
|
2017-01-16 21:58:49 +08:00
|
|
|
}
|
|
|
|
}
|