eigen/unsupported/test/cxx11_tensor_device_sycl.cpp

80 lines
3.2 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2016-09-19 21:09:25 +08:00
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
2016-10-06 05:24:24 +08:00
#define EIGEN_TEST_FUNC cxx11_tensor_device_sycl
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include<stdint.h>
template <typename DataType, int DataLayout>
void test_device_sycl(const Eigen::SyclDevice &sycl_device) {
std::cout <<"Hello from ComputeCpp: the requested device exists and the device name is : "
<< sycl_device.sycl_queue().get_device(). template get_info<cl::sycl::info::device::name>() <<std::endl;
int sizeDim1 = 100;
array<int, 1> tensorRange = {{sizeDim1}};
Tensor<DataType, 1, DataLayout> in(tensorRange);
Tensor<DataType, 1, DataLayout> in1(tensorRange);
memset(in1.data(), 1,in1.size()*sizeof(DataType));
DataType * gpu_in_data = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
sycl_device.memset(gpu_in_data, 1,in.size()*sizeof(DataType) );
sycl_device.memcpyDeviceToHost(in.data(), gpu_in_data, in.size()*sizeof(DataType) );
for (int i=0; i<in.size(); i++) {
VERIFY_IS_APPROX(in(i), in1(i));
}
sycl_device.deallocate(gpu_in_data);
}
template <typename DataType, int DataLayout>
void test_device_exceptions(const Eigen::SyclDevice &sycl_device) {
bool threw_exception = false;
int sizeDim1 = 100;
array<int, 1> tensorDims = {{sizeDim1}};
DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(sizeDim1*sizeof(DataType)));
TensorMap<Tensor<DataType, 1,DataLayout>> in(gpu_data, tensorDims);
TensorMap<Tensor<DataType, 1,DataLayout>> out(gpu_data, tensorDims);
try {
out.device(sycl_device) = in / in.constant(0);
} catch(...) {
threw_exception = true;
}
VERIFY(threw_exception);
sycl_device.deallocate(gpu_data);
}
template<typename DataType, typename dev_Selector> void sycl_device_test_per_device(dev_Selector s){
QueueInterface queueInterface(s);
auto sycl_device = Eigen::SyclDevice(&queueInterface);
test_device_sycl<DataType, RowMajor>(sycl_device);
test_device_sycl<DataType, ColMajor>(sycl_device);
/// this test throw an exeption. enable it if you want to see the exception
// test_device_exceptions<DataType, RowMajor>(sycl_device);
/// this test throw an exeption. enable it if you want to see the exception
// test_device_exceptions<DataType, ColMajor>(sycl_device);
}
2016-10-06 05:24:24 +08:00
void test_cxx11_tensor_device_sycl() {
printf("Test on GPU: OpenCL\n");
CALL_SUBTEST(sycl_device_test_per_device<int>((cl::sycl::gpu_selector())));
printf("repeating the test on CPU: OpenCL\n");
CALL_SUBTEST(sycl_device_test_per_device<int>((cl::sycl::cpu_selector())));
printf("repeating the test on CPU: HOST\n");
CALL_SUBTEST(sycl_device_test_per_device<int>((cl::sycl::host_selector())));
printf("Test Passed******************\n" );
}