eigen/test/eigensolver_complex.cpp

65 lines
2.5 KiB
C++
Raw Normal View History

2009-09-01 22:20:56 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Eigenvalues>
2009-09-01 22:20:56 +08:00
#include <Eigen/LU>
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
/* this test covers the following files:
ComplexEigenSolver.h, and indirectly ComplexSchur.h
2009-09-01 22:20:56 +08:00
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
MatrixType a = MatrixType::Random(rows,cols);
MatrixType symmA = a.adjoint() * a;
2009-09-01 22:20:56 +08:00
ComplexEigenSolver<MatrixType> ei0(symmA);
VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
2009-09-01 22:20:56 +08:00
ComplexEigenSolver<MatrixType> ei1(a);
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
// Regression test for issue #66
MatrixType z = MatrixType::Zero(rows,cols);
ComplexEigenSolver<MatrixType> eiz(z);
VERIFY((eiz.eigenvalues().cwise()==0).all());
2009-09-01 22:20:56 +08:00
}
void test_eigensolver_complex()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) );
2009-09-01 22:20:56 +08:00
}
}