mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
63 lines
2.5 KiB
C++
63 lines
2.5 KiB
C++
|
#include <iostream>
|
||
|
#define EIGEN_USE_SYCL
|
||
|
#include <unsupported/Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::array;
|
||
|
using Eigen::SyclDevice;
|
||
|
using Eigen::Tensor;
|
||
|
using Eigen::TensorMap;
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
using DataType = float;
|
||
|
using IndexType = int64_t;
|
||
|
constexpr auto DataLayout = Eigen::RowMajor;
|
||
|
|
||
|
auto devices = Eigen::get_sycl_supported_devices();
|
||
|
const auto device_selector = *devices.begin();
|
||
|
Eigen::QueueInterface queueInterface(device_selector);
|
||
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||
|
|
||
|
// create the tensors to be used in the operation
|
||
|
IndexType sizeDim1 = 3;
|
||
|
IndexType sizeDim2 = 3;
|
||
|
IndexType sizeDim3 = 3;
|
||
|
array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||
|
|
||
|
// initialize the tensors with the data we want manipulate to
|
||
|
Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
|
||
|
Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
|
||
|
Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
|
||
|
|
||
|
// set up some random data in the tensors to be multiplied
|
||
|
in1 = in1.random();
|
||
|
in2 = in2.random();
|
||
|
|
||
|
// allocate memory for the tensors
|
||
|
DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
|
||
|
DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
|
||
|
DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
|
||
|
|
||
|
//
|
||
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
|
||
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
|
||
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
|
||
|
|
||
|
// copy the memory to the device and do the c=a*b calculation
|
||
|
sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.size())*sizeof(DataType));
|
||
|
sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
|
||
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
|
||
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
|
||
|
sycl_device.synchronize();
|
||
|
|
||
|
// print out the results
|
||
|
for (IndexType i = 0; i < sizeDim1; ++i) {
|
||
|
for (IndexType j = 0; j < sizeDim2; ++j) {
|
||
|
for (IndexType k = 0; k < sizeDim3; ++k) {
|
||
|
std::cout << "device_out" << "(" << i << ", " << j << ", " << k << ") : " << out(i,j,k)
|
||
|
<< " vs host_out" << "(" << i << ", " << j << ", " << k << ") : " << in1(i,j,k) * in2(i,j,k) << "\n";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("c=a*b Done\n");
|
||
|
}
|