eigen/unsupported/test/cxx11_tensor_morphing.cpp

261 lines
7.9 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
static void test_simple_reshape()
{
Tensor<float, 5> tensor1(2,3,1,7,1);
tensor1.setRandom();
Tensor<float, 3> tensor2(2,3,7);
Tensor<float, 2> tensor3(6,7);
Tensor<float, 2> tensor4(2,21);
Tensor<float, 3>::Dimensions dim1{{2,3,7}};
tensor2 = tensor1.reshape(dim1);
Tensor<float, 2>::Dimensions dim2{{6,7}};
tensor3 = tensor1.reshape(dim2);
Tensor<float, 2>::Dimensions dim3{{2,21}};
tensor4 = tensor1.reshape(dim1).reshape(dim3);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));
VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k));
VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k));
}
}
}
}
static void test_reshape_in_expr() {
MatrixXf m1(2,3*5*7*11);
MatrixXf m2(3*5*7*11,13);
m1.setRandom();
m2.setRandom();
MatrixXf m3 = m1 * m2;
TensorMap<Tensor<float, 5>> tensor1(m1.data(), 2,3,5,7,11);
TensorMap<Tensor<float, 5>> tensor2(m2.data(), 3,5,7,11,13);
Tensor<float, 2>::Dimensions newDims1{{2,3*5*7*11}};
Tensor<float, 2>::Dimensions newDims2{{3*5*7*11,13}};
typedef Tensor<float, 1>::DimensionPair DimPair;
array<DimPair, 1> contract_along{{DimPair(1, 0)}};
Tensor<float, 2> tensor3(2,13);
tensor3 = tensor1.reshape(newDims1).contract(tensor2.reshape(newDims2), contract_along);
Map<MatrixXf> res(tensor3.data(), 2, 13);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 13; ++j) {
VERIFY_IS_APPROX(res(i,j), m3(i,j));
}
}
}
2014-07-11 02:27:27 +08:00
static void test_reshape_as_lvalue()
{
Tensor<float, 3> tensor(2,3,7);
tensor.setRandom();
Tensor<float, 2> tensor2d(6,7);
Tensor<float, 3>::Dimensions dim{{2,3,7}};
tensor2d.reshape(dim) = tensor;
2014-08-24 05:35:41 +08:00
float scratch[2*3*1*7*1];
TensorMap<Tensor<float, 5>> tensor5d(scratch, 2,3,1,7,1);
2014-07-11 02:27:27 +08:00
tensor5d.reshape(dim).device(Eigen::DefaultDevice()) = tensor;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k));
VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
}
}
}
}
static void test_simple_slice()
{
Tensor<float, 5> tensor(2,3,5,7,11);
tensor.setRandom();
Tensor<float, 5> slice1(1,1,1,1,1);
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 5> indices(1,2,3,4,5);
Eigen::DSizes<ptrdiff_t, 5> sizes(1,1,1,1,1);
2014-07-11 02:27:27 +08:00
slice1 = tensor.slice(indices, sizes);
VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
Tensor<float, 5> slice2(1,1,2,2,3);
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 5> indices2(1,1,3,4,5);
Eigen::DSizes<ptrdiff_t, 5> sizes2(1,1,2,2,3);
2014-07-11 02:27:27 +08:00
slice2 = tensor.slice(indices2, sizes2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
}
}
}
}
static void test_slice_in_expr() {
MatrixXf m1(7,7);
MatrixXf m2(3,3);
m1.setRandom();
m2.setRandom();
MatrixXf m3 = m1.block(1, 2, 3, 3) * m2.block(0, 2, 3, 1);
TensorMap<Tensor<float, 2>> tensor1(m1.data(), 7, 7);
TensorMap<Tensor<float, 2>> tensor2(m2.data(), 3, 3);
Tensor<float, 2> tensor3(3,1);
typedef Tensor<float, 1>::DimensionPair DimPair;
array<DimPair, 1> contract_along{{DimPair(1, 0)}};
2014-07-11 02:27:27 +08:00
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 2> indices1(1,2);
Eigen::DSizes<ptrdiff_t, 2> sizes1(3,3);
Eigen::DSizes<ptrdiff_t, 2> indices2(0,2);
Eigen::DSizes<ptrdiff_t, 2> sizes2(3,1);
2014-07-11 02:27:27 +08:00
tensor3 = tensor1.slice(indices1, sizes1).contract(tensor2.slice(indices2, sizes2), contract_along);
Map<MatrixXf> res(tensor3.data(), 3, 1);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 1; ++j) {
VERIFY_IS_APPROX(res(i,j), m3(i,j));
}
}
}
static void test_slice_as_lvalue()
{
Tensor<float, 3> tensor1(2,2,7);
tensor1.setRandom();
Tensor<float, 3> tensor2(2,2,7);
tensor2.setRandom();
Tensor<float, 3> tensor3(4,3,5);
tensor3.setRandom();
Tensor<float, 3> tensor4(4,3,2);
tensor4.setRandom();
Tensor<float, 3> result(4,5,7);
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 3> sizes12(2,2,7);
Eigen::DSizes<ptrdiff_t, 3> first_slice(0,0,0);
2014-07-11 02:27:27 +08:00
result.slice(first_slice, sizes12) = tensor1;
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 3> second_slice(2,0,0);
2014-07-11 02:27:27 +08:00
result.slice(second_slice, sizes12).device(Eigen::DefaultDevice()) = tensor2;
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 3> sizes3(4,3,5);
Eigen::DSizes<ptrdiff_t, 3> third_slice(0,2,0);
2014-07-11 02:27:27 +08:00
result.slice(third_slice, sizes3) = tensor3;
2014-08-24 05:35:41 +08:00
Eigen::DSizes<ptrdiff_t, 3> sizes4(4,3,2);
Eigen::DSizes<ptrdiff_t, 3> fourth_slice(0,2,5);
2014-07-11 02:27:27 +08:00
result.slice(fourth_slice, sizes4) = tensor4;
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 7; ++k) {
for (int i = 0; i < 2; ++i) {
VERIFY_IS_EQUAL(result(i,j,k), tensor1(i,j,k));
VERIFY_IS_EQUAL(result(i+2,j,k), tensor2(i,j,k));
}
}
}
for (int i = 0; i < 4; ++i) {
for (int j = 2; j < 5; ++j) {
for (int k = 0; k < 5; ++k) {
VERIFY_IS_EQUAL(result(i,j,k), tensor3(i,j-2,k));
}
for (int k = 5; k < 7; ++k) {
VERIFY_IS_EQUAL(result(i,j,k), tensor4(i,j-2,k-5));
}
}
}
}
static void test_slice_raw_data()
{
Tensor<float, 4> tensor(3,5,7,11);
tensor.setRandom();
Eigen::DSizes<ptrdiff_t, 4> offsets(1,2,3,4);
Eigen::DSizes<ptrdiff_t, 4> extents(1,1,1,1);
typedef TensorEvaluator<decltype(tensor.slice(offsets, extents)), DefaultDevice> SliceEvaluator;
auto slice1 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice1.dimensions().TotalSize(), 1ul);
VERIFY_IS_EQUAL(slice1.data()[0], tensor(1,2,3,4));
extents = Eigen::DSizes<ptrdiff_t, 4>(2,1,1,1);
auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2ul);
VERIFY_IS_EQUAL(slice2.data()[0], tensor(1,2,3,4));
VERIFY_IS_EQUAL(slice2.data()[1], tensor(2,2,3,4));
extents = Eigen::DSizes<ptrdiff_t, 4>(1,2,1,1);
auto slice3 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice3.dimensions().TotalSize(), 2ul);
VERIFY_IS_EQUAL(slice3.data(), static_cast<float*>(0));
offsets = Eigen::DSizes<ptrdiff_t, 4>(0,2,3,4);
extents = Eigen::DSizes<ptrdiff_t, 4>(3,2,1,1);
auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 6ul);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 2; ++j) {
VERIFY_IS_EQUAL(slice4.data()[i+3*j], tensor(i,2+j,3,4));
}
}
offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,4);
extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,2);
auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 210ul);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 2; ++l) {
int slice_index = i + 3 * (j + 5 * (k + 7 * l));
VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i,j,k,l+4));
}
}
}
}
offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,0);
extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,11);
auto slice6 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
VERIFY_IS_EQUAL(slice6.dimensions().TotalSize(), 3ul*5*7*11);
VERIFY_IS_EQUAL(slice6.data(), tensor.data());
}
void test_cxx11_tensor_morphing()
{
CALL_SUBTEST(test_simple_reshape());
CALL_SUBTEST(test_reshape_in_expr());
2014-07-11 02:27:27 +08:00
CALL_SUBTEST(test_reshape_as_lvalue());
CALL_SUBTEST(test_simple_slice());
CALL_SUBTEST(test_slice_in_expr());
CALL_SUBTEST(test_slice_as_lvalue());
CALL_SUBTEST(test_slice_raw_data());
}