eigen/test/gpu_basic.cu

310 lines
10 KiB
Plaintext
Raw Normal View History

2016-08-29 17:06:08 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// workaround issue between gcc >= 4.7 and cuda 5.5
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
#undef _GLIBCXX_ATOMIC_BUILTINS
#undef _GLIBCXX_USE_INT128
#endif
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#include "main.h"
#include "gpu_common.h"
// Check that dense modules can be properly parsed by nvcc
#include <Eigen/Dense>
// struct Foo{
// EIGEN_DEVICE_FUNC
// void operator()(int i, const float* mats, float* vecs) const {
// using namespace Eigen;
// // Matrix3f M(data);
// // Vector3f x(data+9);
// // Map<Vector3f>(data+9) = M.inverse() * x;
// Matrix3f M(mats+i/16);
// Vector3f x(vecs+i*3);
// // using std::min;
// // using std::sqrt;
// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
// }
// };
template<typename T>
struct coeff_wise {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T x1(in+i);
T x2(in+i+1);
T x3(in+i+2);
Map<T> res(out+i*T::MaxSizeAtCompileTime);
res.array() += (in[0] * x1 + x2).array() * x3.array();
}
};
template<typename T>
struct complex_sqrt {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
typedef typename T::Scalar ComplexType;
typedef typename T::Scalar::value_type ValueType;
const int num_special_inputs = 18;
if (i == 0) {
const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
SpecialInputs special_in;
special_in.setZero();
int idx = 0;
special_in[idx++] = ComplexType(0, 0);
special_in[idx++] = ComplexType(-0, 0);
special_in[idx++] = ComplexType(0, -0);
special_in[idx++] = ComplexType(-0, -0);
// GCC's fallback sqrt implementation fails for inf inputs.
// It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
// clang includes the GCC header (which temporarily disables
// _GLIBCXX_USE_C99_COMPLEX)
#if !defined(_GLIBCXX_COMPLEX) || \
(_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
const ValueType inf = std::numeric_limits<ValueType>::infinity();
special_in[idx++] = ComplexType(1.0, inf);
special_in[idx++] = ComplexType(nan, inf);
special_in[idx++] = ComplexType(1.0, -inf);
special_in[idx++] = ComplexType(nan, -inf);
special_in[idx++] = ComplexType(-inf, 1.0);
special_in[idx++] = ComplexType(inf, 1.0);
special_in[idx++] = ComplexType(-inf, -1.0);
special_in[idx++] = ComplexType(inf, -1.0);
special_in[idx++] = ComplexType(-inf, nan);
special_in[idx++] = ComplexType(inf, nan);
#endif
special_in[idx++] = ComplexType(1.0, nan);
special_in[idx++] = ComplexType(nan, 1.0);
special_in[idx++] = ComplexType(nan, -1.0);
special_in[idx++] = ComplexType(nan, nan);
Map<SpecialInputs> special_out(out);
special_out = special_in.cwiseSqrt();
}
T x1(in + i);
Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime);
res = x1.cwiseSqrt();
}
};
2015-07-20 16:53:03 +08:00
template<typename T>
struct replicate {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T x1(in+i);
int step = x1.size() * 4;
int stride = 3 * step;
typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
}
};
template<typename T>
struct redux {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
int N = 10;
T x1(in+i);
out[i*N+0] = x1.minCoeff();
out[i*N+1] = x1.maxCoeff();
out[i*N+2] = x1.sum();
out[i*N+3] = x1.prod();
out[i*N+4] = x1.matrix().squaredNorm();
out[i*N+5] = x1.matrix().norm();
out[i*N+6] = x1.colwise().sum().maxCoeff();
out[i*N+7] = x1.rowwise().maxCoeff().sum();
out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
}
};
template<typename T1, typename T2>
struct prod_test {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
T1 x1(in+i);
T2 x2(in+i+1);
Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
res += in[i] * x1 * x2;
}
};
template<typename T1, typename T2>
struct diagonal {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
{
using namespace Eigen;
T1 x1(in+i);
Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
res += x1.diagonal();
}
};
template<typename T>
struct eigenvalues_direct {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in+i);
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
T A = M*M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.computeDirect(A);
res = eig.eigenvalues();
}
};
template<typename T>
struct eigenvalues {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in+i);
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
T A = M*M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.compute(A);
res = eig.eigenvalues();
}
};
template<typename T>
struct matrix_inverse {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
{
using namespace Eigen;
T M(in+i);
Map<T> res(out+i*T::MaxSizeAtCompileTime);
res = M.inverse();
}
};
template<typename Type1, typename Type2>
bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
{
if (a.rows() != b.rows()) {
return false;
}
if (a.cols() != b.cols()) {
return false;
}
for (Index r = 0; r < a.rows(); ++r) {
for (Index c = 0; c < a.cols(); ++c) {
if (a(r, c) != b(r, c)
&& !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c)))
&& !test_isApprox(a(r, c), b(r, c))) {
return false;
}
}
}
return true;
}
template<typename Kernel, typename Input, typename Output>
void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out)
{
Output out_ref, out_gpu;
#if !defined(EIGEN_GPU_COMPILE_PHASE)
out_ref = out_gpu = out;
#else
EIGEN_UNUSED_VARIABLE(in);
EIGEN_UNUSED_VARIABLE(out);
#endif
run_on_cpu (ker, n, in, out_ref);
run_on_gpu(ker, n, in, out_gpu);
#if !defined(EIGEN_GPU_COMPILE_PHASE)
verifyIsApproxWithInfsNans(out_ref, out_gpu);
#endif
}
EIGEN_DECLARE_TEST(gpu_basic)
{
ei_test_init_gpu();
int nthreads = 100;
Eigen::VectorXf in, out;
Eigen::VectorXcf cfin, cfout;
#if !defined(EIGEN_GPU_COMPILE_PHASE)
2015-07-20 16:53:03 +08:00
int data_size = nthreads * 512;
in.setRandom(data_size);
out.setConstant(data_size, -1);
cfin.setRandom(data_size);
cfout.setConstant(data_size, -1);
#endif
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
#if !defined(EIGEN_USE_HIP)
// FIXME
// These subtests result in a compile failure on the HIP platform
//
// eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
// base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
// (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
#endif
2015-07-20 16:53:03 +08:00
CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) );
#if defined(__NVCC__)
// FIXME
// These subtests compiles only with nvcc and fail with HIPCC and clang-cuda
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
typedef Matrix<float,6,6> Matrix6f;
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
#endif
}