eigen/unsupported/test/matrix_function.cpp

180 lines
6.0 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
template<typename MatrixType>
MatrixType randomMatrixWithRealEivals(const int size)
{
typedef typename MatrixType::Scalar Scalar;
2010-02-04 02:20:25 +08:00
typedef typename MatrixType::RealScalar RealScalar;
MatrixType diag = MatrixType::Zero(size, size);
for (int i = 0; i < size; ++i) {
diag(i, i) = Scalar(RealScalar(ei_random<int>(0,2)))
+ ei_random<Scalar>() * Scalar(RealScalar(0.01));
}
MatrixType A = MatrixType::Random(size, size);
return A.inverse() * diag * A;
}
template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex>
struct randomMatrixWithImagEivals
{
// Returns a matrix with eigenvalues clustered around 0 and +/- i.
static MatrixType run(const int size);
};
// Partial specialization for real matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 0>
{
static MatrixType run(const int size)
{
typedef typename MatrixType::Scalar Scalar;
MatrixType diag = MatrixType::Zero(size, size);
int i = 0;
while (i < size) {
int randomInt = ei_random<int>(-1, 1);
if (randomInt == 0 || i == size-1) {
diag(i, i) = ei_random<Scalar>() * Scalar(0.01);
++i;
} else {
Scalar alpha = Scalar(randomInt) + ei_random<Scalar>() * Scalar(0.01);
diag(i, i+1) = alpha;
diag(i+1, i) = -alpha;
i += 2;
}
}
MatrixType A = MatrixType::Random(size, size);
return A.inverse() * diag * A;
}
};
// Partial specialization for complex matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 1>
{
static MatrixType run(const int size)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
const Scalar imagUnit(0, 1);
MatrixType diag = MatrixType::Zero(size, size);
for (int i = 0; i < size; ++i) {
diag(i, i) = Scalar(RealScalar(ei_random<int>(-1, 1))) * imagUnit
+ ei_random<Scalar>() * Scalar(RealScalar(0.01));
}
MatrixType A = MatrixType::Random(size, size);
return A.inverse() * diag * A;
}
};
template<typename MatrixType>
void testMatrixExponential(const MatrixType& A)
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
for (int i = 0; i < g_repeat; i++) {
VERIFY_IS_APPROX(ei_matrix_exponential(A),
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp));
}
}
template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& A)
{
for (int i = 0; i < g_repeat; i++) {
MatrixType sinhA = ei_matrix_sinh(A);
MatrixType coshA = ei_matrix_cosh(A);
MatrixType expA = ei_matrix_exponential(A);
VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2);
VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2);
}
}
template<typename MatrixType>
void testGonioFunctions(const MatrixType& A)
{
typedef ei_traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef Matrix<ComplexScalar, Traits::RowsAtCompileTime,
Traits::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
ComplexScalar imagUnit(0,1);
ComplexScalar two(2,0);
for (int i = 0; i < g_repeat; i++) {
ComplexMatrix Ac = A.template cast<ComplexScalar>();
ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
MatrixType sinA = ei_matrix_sin(A);
ComplexMatrix sinAc = sinA.template cast<ComplexScalar>();
VERIFY_IS_APPROX(sinAc, (exp_iA - exp_iA.inverse()) / (two*imagUnit));
MatrixType cosA = ei_matrix_cos(A);
ComplexMatrix cosAc = cosA.template cast<ComplexScalar>();
VERIFY_IS_APPROX(cosAc, (exp_iA + exp_iA.inverse()) / 2);
}
}
template<typename MatrixType>
void testMatrix(const MatrixType& A)
{
testMatrixExponential(A);
testHyperbolicFunctions(A);
testGonioFunctions(A);
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
// Matrices with clustered eigenvalue lead to different code paths
// in MatrixFunction.h and are thus useful for testing.
const int size = m.rows();
for (int i = 0; i < g_repeat; i++) {
testMatrix(MatrixType::Random(size, size).eval());
testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
}
}
void test_matrix_function()
{
CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
CALL_SUBTEST_4(testMatrixType(Matrix2d()));
CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
}