eigen/test/reverse.cpp

194 lines
6.2 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <iostream>
using namespace std;
template<typename MatrixType> void reverse(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols);
VectorType v1 = VectorType::Random(rows);
MatrixType m1_r = m1.reverse();
// Verify that MatrixBase::reverse() works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType> m1_rd(m1);
// Verify that a Reverse default (in both directions) of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType, BothDirections> m1_rb(m1);
// Verify that a Reverse in both directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType, Vertical> m1_rv(m1);
// Verify that a Reverse in the vertical directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
}
}
Reverse<MatrixType, Horizontal> m1_rh(m1);
// Verify that a Reverse in the horizontal directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
}
}
VectorType v1_r = v1.reverse();
// Verify that a VectorType::reverse() of an expression works
for ( int i = 0; i < rows; i++ ) {
VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
}
MatrixType m1_cr = m1.colwise().reverse();
// Verify that PartialRedux::reverse() works (for colwise())
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
}
}
MatrixType m1_rr = m1.rowwise().reverse();
// Verify that PartialRedux::reverse() works (for rowwise())
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
}
}
int ind = ei_random<int>(0, (rows*cols) - 1);
/* Reverse::coeff(int) is for vector only */
/*
MatrixType m1_reversed(m1.reverse());
VERIFY_IS_APPROX( m1_reversed.reverse().coeff( ind ), m1.coeff( ind ) );
MatrixType m1c_reversed = m1.colwise().reverse();
VERIFY_IS_APPROX( m1c_reversed.colwise().reverse().coeff( ind ), m1.coeff( ind ) );
MatrixType m1r_reversed = m1.rowwise().reverse();
VERIFY_IS_APPROX( m1r_reversed.rowwise().reverse().coeff( ind ), m1.coeff( ind ) );
*/
/*
cout << "m1:" << endl << m1 << endl;
cout << "m1c_reversed:" << endl << m1c_reversed << endl;
cout << "----------------" << endl;
for ( int i=0; i< rows*cols; i++){
cout << m1c_reversed.coeff(i) << endl;
}
cout << "----------------" << endl;
for ( int i=0; i< rows*cols; i++){
cout << m1c_reversed.colwise().reverse().coeff(i) << endl;
}
cout << "================" << endl;
cout << "m1.coeff( ind ): " << m1.coeff( ind ) << endl;
cout << "m1c_reversed.colwise().reverse().coeff( ind ): " << m1c_reversed.colwise().reverse().coeff( ind ) << endl;
*/
//MatrixType m1r_reversed = m1.rowwise().reverse();
//VERIFY_IS_APPROX( m1r_reversed.rowwise().reverse().coeff( ind ), m1.coeff( ind ) );
/*
cout << "m1" << endl << m1 << endl;
cout << "m1 using coeff(int index)" << endl;
for ( int i = 0; i < rows*cols; i++) {
cout << m1.coeff(i) << " ";
}
cout << endl;
cout << "m1.transpose()" << endl << m1.transpose() << endl;
cout << "m1.transpose() using coeff(int index)" << endl;
for ( int i = 0; i < rows*cols; i++) {
cout << m1.transpose().coeff(i) << " ";
}
cout << endl;
*/
/*
Scalar x = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
m1.reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
m1.colwise().reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
m1.rowwise().reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
*/
}
void test_reverse()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( reverse(Matrix<float, 1, 1>()) );
CALL_SUBTEST( reverse(Matrix4d()) );
CALL_SUBTEST( reverse(MatrixXcf(3, 3)) );
CALL_SUBTEST( reverse(MatrixXi(8, 12)) );
CALL_SUBTEST( reverse(MatrixXcd(20, 20)) );
CALL_SUBTEST( reverse(Matrix<float, 100, 100>()) );
CALL_SUBTEST( reverse(Matrix<long double,Dynamic,Dynamic>(10,10)) );
}
Vector4f x; x << 1, 2, 3, 4;
Vector4f y; y << 4, 3, 2, 1;
VERIFY(x.reverse()[1] == 3);
VERIFY(x.reverse() == y);
}