eigen/test/cholesky.cpp

165 lines
5.5 KiB
C++
Raw Normal View History

2008-04-27 18:57:32 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
2008-04-27 18:57:32 +08:00
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#define EIGEN_NO_ASSERTION_CHECKING
2008-04-27 18:57:32 +08:00
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/QR>
2008-04-27 18:57:32 +08:00
#ifdef HAS_GSL
#include "gsl_helper.h"
#endif
2008-04-27 18:57:32 +08:00
template<typename MatrixType> void cholesky(const MatrixType& m)
{
/* this test covers the following files:
LLT.h LDLT.h
2008-04-27 18:57:32 +08:00
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
2008-04-27 18:57:32 +08:00
MatrixType a0 = MatrixType::Random(rows,cols);
VectorType vecB = VectorType::Random(rows), vecX(rows);
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
SquareMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
for (int k=0; k<3; ++k)
{
MatrixType a1 = MatrixType::Random(rows,cols);
symm += a1 * a1.adjoint();
}
SquareMatrixType symmUp = symm.template triangularView<UpperTriangular>();
SquareMatrixType symmLo = symm.template triangularView<LowerTriangular>();
// to test if really Cholesky only uses the upper triangular part, uncomment the following
// FIXME: currently that fails !!
//symm.template part<StrictlyLowerTriangular>().setZero();
#ifdef HAS_GSL
// if (ei_is_same_type<RealScalar,double>::ret)
// {
// typedef GslTraits<Scalar> Gsl;
// typename Gsl::Matrix gMatA=0, gSymm=0;
// typename Gsl::Vector gVecB=0, gVecX=0;
// convert<MatrixType>(symm, gSymm);
// convert<MatrixType>(symm, gMatA);
// convert<VectorType>(vecB, gVecB);
// convert<VectorType>(vecB, gVecX);
// Gsl::cholesky(gMatA);
// Gsl::cholesky_solve(gMatA, gVecB, gVecX);
// VectorType vecX(rows), _vecX, _vecB;
// convert(gVecX, _vecX);
// symm.llt().solve(vecB, &vecX);
// Gsl::prod(gSymm, gVecX, gVecB);
// convert(gVecB, _vecB);
// // test gsl itself !
// VERIFY_IS_APPROX(vecB, _vecB);
// VERIFY_IS_APPROX(vecX, _vecX);
//
// Gsl::free(gMatA);
// Gsl::free(gSymm);
// Gsl::free(gVecB);
// Gsl::free(gVecX);
// }
#endif
2008-04-27 18:57:32 +08:00
{
LLT<SquareMatrixType,LowerTriangular> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.matrixL().toDense() * chollo.matrixL().adjoint().toDense());
chollo.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
chollo.solve(matB, &matX);
VERIFY_IS_APPROX(symm * matX, matB);
// test the upper mode
LLT<SquareMatrixType,UpperTriangular> cholup(symmUp);
VERIFY_IS_APPROX(symm, cholup.matrixL().toDense() * cholup.matrixL().adjoint().toDense());
cholup.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
cholup.solve(matB, &matX);
VERIFY_IS_APPROX(symm * matX, matB);
}
int sign = ei_random<int>()%2 ? 1 : -1;
if(sign == -1)
{
symm = -symm; // test a negative matrix
}
{
LDLT<SquareMatrixType> ldlt(symm);
// TODO(keir): This doesn't make sense now that LDLT pivots.
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
ldlt.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
ldlt.solve(matB, &matX);
VERIFY_IS_APPROX(symm * matX, matB);
}
2008-04-27 18:57:32 +08:00
}
template<typename MatrixType> void cholesky_verify_assert()
{
MatrixType tmp;
LLT<MatrixType> llt;
VERIFY_RAISES_ASSERT(llt.matrixL())
VERIFY_RAISES_ASSERT(llt.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))
LDLT<MatrixType> ldlt;
VERIFY_RAISES_ASSERT(ldlt.matrixL())
VERIFY_RAISES_ASSERT(ldlt.permutationP())
VERIFY_RAISES_ASSERT(ldlt.vectorD())
VERIFY_RAISES_ASSERT(ldlt.isPositive())
VERIFY_RAISES_ASSERT(ldlt.isNegative())
VERIFY_RAISES_ASSERT(ldlt.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp))
}
void test_cholesky()
2008-04-27 18:57:32 +08:00
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
CALL_SUBTEST( cholesky(MatrixXd(1,1)) );
CALL_SUBTEST( cholesky(Matrix2d()) );
CALL_SUBTEST( cholesky(Matrix3f()) );
CALL_SUBTEST( cholesky(Matrix4d()) );
CALL_SUBTEST( cholesky(MatrixXcd(100,100)) );
CALL_SUBTEST( cholesky(MatrixXd(200,200)) );
}
CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );
CALL_SUBTEST( cholesky_verify_assert<Matrix3d>() );
CALL_SUBTEST( cholesky_verify_assert<MatrixXf>() );
CALL_SUBTEST( cholesky_verify_assert<MatrixXd>() );
2008-04-27 18:57:32 +08:00
}