eigen/test/main.h

490 lines
16 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
2008-11-24 21:40:43 +08:00
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include <cstdlib>
#include <cerrno>
#include <ctime>
#include <iostream>
#include <string>
#include <vector>
#include <typeinfo>
2009-09-02 05:15:30 +08:00
#ifdef NDEBUG
#undef NDEBUG
#endif
#ifndef EIGEN_TEST_FUNC
#error EIGEN_TEST_FUNC must be defined
#endif
#define DEFAULT_REPEAT 10
#ifdef __ICC
// disable warning #279: controlling expression is constant
#pragma warning disable 279
#endif
namespace Eigen
{
static std::vector<std::string> g_test_stack;
static int g_repeat;
static unsigned int g_seed;
static bool g_has_set_repeat, g_has_set_seed;
}
#define EI_PP_MAKE_STRING2(S) #S
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
2009-08-15 16:18:05 +08:00
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
#ifndef EIGEN_NO_ASSERTION_CHECKING
namespace Eigen
{
static const bool should_raise_an_assert = false;
// Used to avoid to raise two exceptions at a time in which
// case the exception is not properly caught.
// This may happen when a second exceptions is raise in a destructor.
static bool no_more_assert = false;
2008-03-13 02:44:42 +08:00
struct ei_assert_exception
{
ei_assert_exception(void) {}
~ei_assert_exception() { Eigen::no_more_assert = false; }
};
}
// If EIGEN_DEBUG_ASSERTS is defined and if no assertion is raised while
// one should have been, then the list of excecuted assertions is printed out.
//
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
// significantly increases the compilation time
// and might even introduce side effects that would hide
// some memory errors.
#ifdef EIGEN_DEBUG_ASSERTS
namespace Eigen
{
static bool ei_push_assert = false;
static std::vector<std::string> ei_assert_list;
}
#define ei_assert(a) \
if( (!(a)) && (!no_more_assert) ) \
{ \
Eigen::no_more_assert = true; \
throw Eigen::ei_assert_exception(); \
} \
else if (Eigen::ei_push_assert) \
{ \
ei_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__)" ("EI_PP_MAKE_STRING(__LINE__)") : "#a) ); \
}
#define VERIFY_RAISES_ASSERT(a) \
{ \
Eigen::no_more_assert = false; \
try { \
Eigen::ei_assert_list.clear(); \
Eigen::ei_push_assert = true; \
a; \
Eigen::ei_push_assert = false; \
std::cerr << "One of the following asserts should have been raised:\n"; \
for (uint ai=0 ; ai<ei_assert_list.size() ; ++ai) \
std::cerr << " " << ei_assert_list[ai] << "\n"; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} catch (Eigen::ei_assert_exception e) { \
Eigen::ei_push_assert = false; VERIFY(true); \
} \
}
#else // EIGEN_DEBUG_ASSERTS
#define ei_assert(a) \
if( (!(a)) && (!no_more_assert) ) \
{ \
Eigen::no_more_assert = true; \
throw Eigen::ei_assert_exception(); \
}
#define VERIFY_RAISES_ASSERT(a) { \
Eigen::no_more_assert = false; \
try { a; VERIFY(Eigen::should_raise_an_assert && # a); } \
catch (Eigen::ei_assert_exception e) { VERIFY(true); } \
}
#endif // EIGEN_DEBUG_ASSERTS
#define EIGEN_USE_CUSTOM_ASSERT
#else // EIGEN_NO_ASSERTION_CHECKING
#define VERIFY_RAISES_ASSERT(a) {}
#endif // EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_INTERNAL_DEBUGGING
#define EIGEN_NICE_RANDOM
#include <Eigen/QR> // required for createRandomMatrixOfRank
#define VERIFY(a) do { if (!(a)) { \
std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" \
<< std::endl << " " << EI_PP_MAKE_STRING(a) << std::endl << std::endl; \
exit(2); \
} } while (0)
#define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b))
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b))
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b))
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_ei_isMuchSmallerThan(a, b))
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_ei_isApproxOrLessThan(a, b))
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_ei_isApproxOrLessThan(a, b))
2009-09-01 10:08:43 +08:00
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
#define CALL_SUBTEST(FUNC) do { \
g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
FUNC; \
g_test_stack.pop_back(); \
} while (0)
#ifdef EIGEN_TEST_PART_1
#define CALL_SUBTEST_1(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_1(FUNC)
#endif
#ifdef EIGEN_TEST_PART_2
#define CALL_SUBTEST_2(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_2(FUNC)
#endif
#ifdef EIGEN_TEST_PART_3
#define CALL_SUBTEST_3(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_3(FUNC)
#endif
#ifdef EIGEN_TEST_PART_4
#define CALL_SUBTEST_4(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_4(FUNC)
#endif
#ifdef EIGEN_TEST_PART_5
#define CALL_SUBTEST_5(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_5(FUNC)
#endif
#ifdef EIGEN_TEST_PART_6
#define CALL_SUBTEST_6(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_6(FUNC)
#endif
#ifdef EIGEN_TEST_PART_7
#define CALL_SUBTEST_7(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_7(FUNC)
#endif
#ifdef EIGEN_TEST_PART_8
#define CALL_SUBTEST_8(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_8(FUNC)
#endif
#ifdef EIGEN_TEST_PART_9
#define CALL_SUBTEST_9(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_9(FUNC)
#endif
#ifdef EIGEN_TEST_PART_10
#define CALL_SUBTEST_10(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_10(FUNC)
#endif
#ifdef EIGEN_TEST_PART_11
#define CALL_SUBTEST_11(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_11(FUNC)
#endif
#ifdef EIGEN_TEST_PART_12
#define CALL_SUBTEST_12(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_12(FUNC)
#endif
#ifdef EIGEN_TEST_PART_13
#define CALL_SUBTEST_13(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_13(FUNC)
#endif
#ifdef EIGEN_TEST_PART_14
#define CALL_SUBTEST_14(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_14(FUNC)
#endif
#ifdef EIGEN_TEST_PART_15
#define CALL_SUBTEST_15(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_15(FUNC)
#endif
#ifdef EIGEN_TEST_PART_16
#define CALL_SUBTEST_16(FUNC) CALL_SUBTEST(FUNC)
#else
#define CALL_SUBTEST_16(FUNC)
#endif
namespace Eigen {
template<typename T> inline typename NumTraits<T>::Real test_precision();
template<> inline int test_precision<int>() { return 0; }
template<> inline float test_precision<float>() { return 1e-3f; }
template<> inline double test_precision<double>() { return 1e-6; }
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
template<> inline long double test_precision<long double>() { return 1e-6; }
inline bool test_ei_isApprox(const int& a, const int& b)
{ return ei_isApprox(a, b, test_precision<int>()); }
inline bool test_ei_isMuchSmallerThan(const int& a, const int& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<int>()); }
inline bool test_ei_isApproxOrLessThan(const int& a, const int& b)
{ return ei_isApproxOrLessThan(a, b, test_precision<int>()); }
inline bool test_ei_isApprox(const float& a, const float& b)
{ return ei_isApprox(a, b, test_precision<float>()); }
inline bool test_ei_isMuchSmallerThan(const float& a, const float& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<float>()); }
inline bool test_ei_isApproxOrLessThan(const float& a, const float& b)
{ return ei_isApproxOrLessThan(a, b, test_precision<float>()); }
inline bool test_ei_isApprox(const double& a, const double& b)
{ return ei_isApprox(a, b, test_precision<double>()); }
inline bool test_ei_isMuchSmallerThan(const double& a, const double& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<double>()); }
inline bool test_ei_isApproxOrLessThan(const double& a, const double& b)
{ return ei_isApproxOrLessThan(a, b, test_precision<double>()); }
inline bool test_ei_isApprox(const std::complex<float>& a, const std::complex<float>& b)
{ return ei_isApprox(a, b, test_precision<std::complex<float> >()); }
inline bool test_ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
inline bool test_ei_isApprox(const std::complex<double>& a, const std::complex<double>& b)
{ return ei_isApprox(a, b, test_precision<std::complex<double> >()); }
inline bool test_ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
inline bool test_ei_isApprox(const long double& a, const long double& b)
{ return ei_isApprox(a, b, test_precision<long double>()); }
inline bool test_ei_isMuchSmallerThan(const long double& a, const long double& b)
{ return ei_isMuchSmallerThan(a, b, test_precision<long double>()); }
inline bool test_ei_isApproxOrLessThan(const long double& a, const long double& b)
{ return ei_isApproxOrLessThan(a, b, test_precision<long double>()); }
template<typename Type1, typename Type2>
inline bool test_ei_isApprox(const Type1& a, const Type2& b)
{
return a.isApprox(b, test_precision<typename Type1::Scalar>());
}
template<typename Derived1, typename Derived2>
inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
const MatrixBase<Derived2>& m2)
{
return m1.isMuchSmallerThan(m2, test_precision<typename ei_traits<Derived1>::Scalar>());
}
template<typename Derived>
inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived>& m,
const typename NumTraits<typename ei_traits<Derived>::Scalar>::Real& s)
{
return m.isMuchSmallerThan(s, test_precision<typename ei_traits<Derived>::Scalar>());
}
2009-09-01 10:08:43 +08:00
template<typename Derived>
inline bool test_isUnitary(const MatrixBase<Derived>& m)
{
return m.isUnitary(test_precision<typename ei_traits<Derived>::Scalar>());
}
2009-08-20 13:29:38 +08:00
template<typename MatrixType>
void createRandomMatrixOfRank(int desired_rank, int rows, int cols, MatrixType& m)
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, Dynamic, 1> VectorType;
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
if(desired_rank == 0)
{
m.setZero(rows,cols);
return;
}
if(desired_rank == 1)
{
m = VectorType::Random(rows) * VectorType::Random(cols).transpose();
return;
}
MatrixAType a = MatrixAType::Random(rows,rows);
MatrixType d = MatrixType::Identity(rows,cols);
MatrixBType b = MatrixBType::Random(cols,cols);
// set the diagonal such that only desired_rank non-zero entries reamain
const int diag_size = std::min(d.rows(),d.cols());
if(diag_size != desired_rank)
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
HouseholderQR<MatrixAType> qra(a);
HouseholderQR<MatrixBType> qrb(b);
m = qra.householderQ() * d * qrb.householderQ();
}
} // end namespace Eigen
template<typename T> struct GetDifferentType;
template<> struct GetDifferentType<float> { typedef double type; };
template<> struct GetDifferentType<double> { typedef float type; };
template<typename T> struct GetDifferentType<std::complex<T> >
{ typedef std::complex<typename GetDifferentType<T>::type> type; };
template<typename T> std::string type_name() { return "other"; }
template<> std::string type_name<float>() { return "float"; }
template<> std::string type_name<double>() { return "double"; }
template<> std::string type_name<int>() { return "int"; }
template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
// forward declaration of the main test function
void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
using namespace Eigen;
void set_repeat_from_string(const char *str)
{
errno = 0;
g_repeat = int(strtoul(str, 0, 10));
if(errno || g_repeat <= 0)
{
std::cout << "Invalid repeat value " << str << std::endl;
exit(EXIT_FAILURE);
}
g_has_set_repeat = true;
}
void set_seed_from_string(const char *str)
{
errno = 0;
g_seed = strtoul(str, 0, 10);
if(errno || g_seed == 0)
{
std::cout << "Invalid seed value " << str << std::endl;
exit(EXIT_FAILURE);
}
g_has_set_seed = true;
}
int main(int argc, char *argv[])
{
g_has_set_repeat = false;
g_has_set_seed = false;
bool need_help = false;
for(int i = 1; i < argc; i++)
{
if(argv[i][0] == 'r')
{
if(g_has_set_repeat)
{
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
return 1;
}
set_repeat_from_string(argv[i]+1);
}
else if(argv[i][0] == 's')
{
if(g_has_set_seed)
{
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
return 1;
}
set_seed_from_string(argv[i]+1);
}
else
{
need_help = true;
}
}
if(need_help)
{
std::cout << "This test application takes the following optional arguments:" << std::endl;
std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
std::cout << std::endl;
std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
std::cout << "will be used as default values for these parameters." << std::endl;
return 1;
}
char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
if(!g_has_set_repeat && env_EIGEN_REPEAT)
set_repeat_from_string(env_EIGEN_REPEAT);
char *env_EIGEN_SEED = getenv("EIGEN_SEED");
if(!g_has_set_seed && env_EIGEN_SEED)
set_seed_from_string(env_EIGEN_SEED);
if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
srand(g_seed);
std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC));
EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
return 0;
}