mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82 lines
3.0 KiB
C++
82 lines
3.0 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// Eigen is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License and a copy of the GNU General Public License along with
|
||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
#include "main.h"
|
||
|
|
||
|
template<typename MatrixType> void diagonal(const MatrixType& m)
|
||
|
{
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||
|
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||
|
int rows = m.rows();
|
||
|
int cols = m.cols();
|
||
|
|
||
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
||
|
m2 = MatrixType::Random(rows, cols);
|
||
|
|
||
|
//check diagonal()
|
||
|
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
|
||
|
m2.diagonal() = 2 * m1.diagonal();
|
||
|
m2.diagonal()[0] *= 3;
|
||
|
|
||
|
if (rows>2)
|
||
|
{
|
||
|
enum {
|
||
|
N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0,
|
||
|
N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0
|
||
|
};
|
||
|
|
||
|
// check sub/super diagonal
|
||
|
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
|
||
|
m2.template diagonal<N1>()[0] *= 3;
|
||
|
VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
|
||
|
|
||
|
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
|
||
|
m2.template diagonal<N2>()[0] *= 3;
|
||
|
VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
|
||
|
|
||
|
m2.diagonal(N1) = 2 * m1.diagonal(N1);
|
||
|
m2.diagonal(N1)[0] *= 3;
|
||
|
VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
|
||
|
|
||
|
m2.diagonal(N2) = 2 * m1.diagonal(N2);
|
||
|
m2.diagonal(N2)[0] *= 3;
|
||
|
VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_diagonal()
|
||
|
{
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) );
|
||
|
CALL_SUBTEST_2( diagonal(Matrix4d()) );
|
||
|
CALL_SUBTEST_2( diagonal(MatrixXcf(3, 3)) );
|
||
|
CALL_SUBTEST_2( diagonal(MatrixXi(8, 12)) );
|
||
|
CALL_SUBTEST_2( diagonal(MatrixXcd(20, 20)) );
|
||
|
CALL_SUBTEST_1( diagonal(MatrixXf(21, 19)) );
|
||
|
CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) );
|
||
|
}
|
||
|
}
|