mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
45 lines
1.1 KiB
C++
45 lines
1.1 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2013 Christoph Hertzberg <chtz@informatik.uni-bremen.de>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/AutoDiff>
|
||
|
|
||
|
/*
|
||
|
* In this file scalar derivations are tested for correctness.
|
||
|
* TODO add more tests!
|
||
|
*/
|
||
|
|
||
|
template<typename Scalar> void check_atan2()
|
||
|
{
|
||
|
typedef Matrix<Scalar, 1, 1> Deriv1;
|
||
|
typedef AutoDiffScalar<Deriv1> AD;
|
||
|
|
||
|
AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX());
|
||
|
|
||
|
using std::exp;
|
||
|
Scalar r = exp(internal::random<Scalar>(-10, 10));
|
||
|
|
||
|
AD s = sin(x), c = cos(x);
|
||
|
AD res = atan2(r*s, r*c);
|
||
|
|
||
|
VERIFY_IS_APPROX(res.value(), x.value());
|
||
|
VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void test_autodiff_scalar()
|
||
|
{
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_1( check_atan2<float>() );
|
||
|
CALL_SUBTEST_2( check_atan2<double>() );
|
||
|
}
|
||
|
}
|