eigen/Eigen/src/Sparse/SparseMatrix.h

332 lines
8.7 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H
template<typename _Scalar> class SparseMatrix;
/** \class SparseMatrix
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
template<typename _Scalar>
struct ei_traits<SparseMatrix<_Scalar> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = 0,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
};
template<typename _Scalar>
class SparseMatrix : public MatrixBase<SparseMatrix<_Scalar> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(SparseMatrix)
protected:
int* m_colPtrs;
SparseArray<Scalar> m_data;
int m_rows;
int m_cols;
inline int _rows() const { return m_rows; }
inline int _cols() const { return m_cols; }
inline const Scalar& _coeff(int row, int col) const
{
int id = m_colPtrs[col];
int end = m_colPtrs[col+1];
while (id<end && m_data.index(id)!=row)
{
++id;
}
if (id==end)
return 0;
return m_data.value(id);
}
inline Scalar& _coeffRef(int row, int col)
{
int id = m_colPtrs[cols];
int end = m_colPtrs[cols+1];
while (id<end && m_data.index(id)!=row)
{
++id;
}
ei_assert(id!=end);
return m_data.value(id);
}
public:
class InnerIterator;
inline int rows() const { return _rows(); }
inline int cols() const { return _cols(); }
/** \returns the number of non zero coefficients */
inline int nonZeros() const { return m_data.size(); }
inline const Scalar& operator() (int row, int col) const
{
return _coeff(row, col);
}
inline Scalar& operator() (int row, int col)
{
return _coeffRef(row, col);
}
inline void startFill(int reserveSize = 1000)
{
m_data.clear();
m_data.reserve(reserveSize);
for (int i=0; i<=m_cols; ++i)
m_colPtrs[i] = 0;
}
inline Scalar& fill(int row, int col)
{
if (m_colPtrs[col+1]==0)
{
int i=col;
while (i>=0 && m_colPtrs[i]==0)
{
m_colPtrs[i] = m_data.size();
--i;
}
m_colPtrs[col+1] = m_colPtrs[col];
}
assert(m_colPtrs[col+1] == m_data.size());
int id = m_colPtrs[col+1];
m_colPtrs[col+1]++;
m_data.append(0, row);
return m_data.value(id);
}
inline void endFill()
{
int size = m_data.size();
int i = m_cols;
// find the last filled column
while (i>=0 && m_colPtrs[i]==0)
--i;
i++;
while (i<=m_cols)
{
m_colPtrs[i] = size;
++i;
}
}
void resize(int rows, int cols)
{
if (m_cols != cols)
{
delete[] m_colPtrs;
m_colPtrs = new int [cols+1];
m_rows = rows;
m_cols = cols;
}
}
inline SparseMatrix(int rows, int cols)
: m_rows(0), m_cols(0), m_colPtrs(0)
{
resize(rows, cols);
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
resize(other.rows(), other.cols());
m_colPtrs = other.m_colPtrs;
for (int col=0; col<=cols(); ++col)
m_colPtrs[col] = other.m_colPtrs[col];
m_data = other.m_data;
return *this;
}
template<typename OtherDerived>
inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
{
resize(other.rows(), other.cols());
startFill(std::max(m_rows,m_cols)*2);
for (int col=0; col<cols(); ++col)
{
for (typename OtherDerived::InnerIterator it(other.derived(), col); it; ++it)
{
Scalar v = it.value();
if (v!=Scalar(0))
fill(it.index(),col) = v;
}
}
endFill();
return *this;
}
// old explicit operator+
// template<typename Other>
// SparseMatrix operator+(const Other& other)
// {
// SparseMatrix res(rows(), cols());
// res.startFill(nonZeros()*3);
// for (int col=0; col<cols(); ++col)
// {
// InnerIterator row0(*this,col);
// typename Other::InnerIterator row1(other,col);
// while (row0 && row1)
// {
// if (row0.index()==row1.index())
// {
// std::cout << "both " << col << " " << row0.index() << "\n";
// Scalar v = row0.value() + row1.value();
// if (v!=Scalar(0))
// res.fill(row0.index(),col) = v;
// ++row0;
// ++row1;
// }
// else if (row0.index()<row1.index())
// {
// std::cout << "row0 " << col << " " << row0.index() << "\n";
// Scalar v = row0.value();
// if (v!=Scalar(0))
// res.fill(row0.index(),col) = v;
// ++row0;
// }
// else if (row1)
// {
// std::cout << "row1 " << col << " " << row0.index() << "\n";
// Scalar v = row1.value();
// if (v!=Scalar(0))
// res.fill(row1.index(),col) = v;
// ++row1;
// }
// }
// while (row0)
// {
// std::cout << "row0 " << col << " " << row0.index() << "\n";
// Scalar v = row0.value();
// if (v!=Scalar(0))
// res.fill(row0.index(),col) = v;
// ++row0;
// }
// while (row1)
// {
// std::cout << "row1 " << col << " " << row1.index() << "\n";
// Scalar v = row1.value();
// if (v!=Scalar(0))
// res.fill(row1.index(),col) = v;
// ++row1;
// }
// }
// res.endFill();
// return res;
// // return binaryOp(other, ei_scalar_sum_op<Scalar>());
// }
// WARNING for efficiency reason it currently outputs the transposed matrix
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
{
s << "Nonzero entries:\n";
for (uint i=0; i<m.nonZeros(); ++i)
{
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
}
s << std::endl;
s << std::endl;
s << "Column pointers:\n";
for (uint i=0; i<m.cols(); ++i)
{
s << m.m_colPtrs[i] << " ";
}
s << std::endl;
s << std::endl;
s << "Matrix (transposed):\n";
for (int j=0; j<m.cols(); j++ )
{
int end = m.m_colPtrs[j+1];
int i=0;
for (int id=m.m_colPtrs[j]; id<end; id++)
{
int row = m.m_data.index(id);
// fill with zeros
for (int k=i; k<row; ++k)
s << "0 ";
i = row+1;
s << m.m_data.value(id) << " ";
}
for (int k=i; k<m.rows(); ++k)
s << "0 ";
s << std::endl;
}
return s;
}
/** Destructor */
inline ~SparseMatrix()
{
delete[] m_colPtrs;
}
};
template<typename Scalar>
class SparseMatrix<Scalar>::InnerIterator
{
public:
InnerIterator(const SparseMatrix& mat, int col)
: m_matrix(mat), m_id(mat.m_colPtrs[col]), m_start(m_id), m_end(mat.m_colPtrs[col+1])
{}
InnerIterator& operator++() { m_id++; return *this; }
Scalar value() { return m_matrix.m_data.value(m_id); }
int index() const { return m_matrix.m_data.index(m_id); }
operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const SparseMatrix& m_matrix;
int m_id;
const int m_start;
const int m_end;
};
#endif // EIGEN_SPARSEMATRIX_H