mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
219 lines
8.5 KiB
C++
219 lines
8.5 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2016
|
||
|
// Mehdi Goli Codeplay Software Ltd.
|
||
|
// Ralph Potter Codeplay Software Ltd.
|
||
|
// Luke Iwanski Codeplay Software Ltd.
|
||
|
// Contact: <eigen@codeplay.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
||
|
#define EIGEN_TEST_NO_COMPLEX
|
||
|
#define EIGEN_TEST_FUNC cxx11_tensor_contract_sycl
|
||
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
||
|
#define EIGEN_USE_SYCL
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <chrono>
|
||
|
#include <ctime>
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::array;
|
||
|
using Eigen::SyclDevice;
|
||
|
using Eigen::Tensor;
|
||
|
using Eigen::TensorMap;
|
||
|
typedef Tensor<float, 1>::DimensionPair DimPair;
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_sycl_contraction(const Device& sycl_device, int m_size, int k_size, int n_size)
|
||
|
{
|
||
|
// std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
|
||
|
// with these dimensions, the output has 300 * 140 elements, which is
|
||
|
// more than 30 * 1024, which is the number of threads in blocks on
|
||
|
// a 15 SM GK110 GPU
|
||
|
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
|
||
|
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
|
||
|
Tensor<float, 2, DataLayout> t_result(m_size, n_size);
|
||
|
Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size);
|
||
|
// Eigen::array<DimPair, 1> dims(DimPair(1, 0));
|
||
|
Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
|
||
|
Eigen::array<int, 2> left_dims = {{m_size, k_size}};
|
||
|
Eigen::array<int, 2> right_dims = {{k_size, n_size}};
|
||
|
Eigen::array<int, 2> result_dims = {{m_size, n_size}};
|
||
|
|
||
|
t_left.setRandom();
|
||
|
t_right.setRandom();
|
||
|
|
||
|
std::size_t t_left_bytes = t_left.size() * sizeof(float);
|
||
|
std::size_t t_right_bytes = t_right.size() * sizeof(float);
|
||
|
std::size_t t_result_bytes = t_result.size() * sizeof(float);
|
||
|
|
||
|
float * d_t_left = static_cast<float*>(sycl_device.allocate(t_left_bytes));
|
||
|
float * d_t_right = static_cast<float*>(sycl_device.allocate(t_right_bytes));
|
||
|
float * d_t_result = static_cast<float*>(sycl_device.allocate(t_result_bytes));
|
||
|
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_left(d_t_left, left_dims);
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_right(d_t_right, right_dims);
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_result(d_t_result, result_dims);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(d_t_left, t_left.data(),t_left_bytes);
|
||
|
sycl_device.memcpyHostToDevice(d_t_right, t_right.data(),t_right_bytes);
|
||
|
|
||
|
gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
|
||
|
t_result = t_left.contract(t_right, dims);
|
||
|
|
||
|
sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes);
|
||
|
|
||
|
|
||
|
for (DenseIndex i = 0; i < t_result.size(); i++) {
|
||
|
if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < 1e-4f) {
|
||
|
continue;
|
||
|
}
|
||
|
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
|
||
|
continue;
|
||
|
}
|
||
|
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
|
||
|
<< " vs " << t_result_gpu(i) << std::endl;
|
||
|
assert(false);
|
||
|
}
|
||
|
sycl_device.deallocate(d_t_left);
|
||
|
sycl_device.deallocate(d_t_right);
|
||
|
sycl_device.deallocate(d_t_result);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_scalar(const Device& sycl_device, int m_size, int k_size, int n_size)
|
||
|
{
|
||
|
//std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
|
||
|
// with these dimensions, the output has 300 * 140 elements, which is
|
||
|
// more than 30 * 1024, which is the number of threads in blocks on
|
||
|
// a 15 SM GK110 GPU
|
||
|
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
|
||
|
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
|
||
|
Tensor<float, 0, DataLayout> t_result;
|
||
|
Tensor<float, 0, DataLayout> t_result_gpu;
|
||
|
Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}};
|
||
|
Eigen::array<int, 2> left_dims = {{m_size, k_size}};
|
||
|
Eigen::array<int, 2> right_dims = {{k_size, n_size}};
|
||
|
t_left.setRandom();
|
||
|
t_right.setRandom();
|
||
|
|
||
|
std::size_t t_left_bytes = t_left.size() * sizeof(float);
|
||
|
std::size_t t_right_bytes = t_right.size() * sizeof(float);
|
||
|
std::size_t t_result_bytes = sizeof(float);
|
||
|
|
||
|
|
||
|
float * d_t_left = static_cast<float*>(sycl_device.allocate(t_left_bytes));
|
||
|
float * d_t_right = static_cast<float*>(sycl_device.allocate(t_right_bytes));
|
||
|
float * d_t_result = static_cast<float*>(sycl_device.allocate(t_result_bytes));
|
||
|
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_left(d_t_left, left_dims);
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_right(d_t_right, right_dims);
|
||
|
Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> > gpu_t_result(d_t_result);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(d_t_left, t_left.data(),t_left_bytes);
|
||
|
sycl_device.memcpyHostToDevice(d_t_right, t_right.data(),t_right_bytes);
|
||
|
|
||
|
gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
|
||
|
t_result = t_left.contract(t_right, dims);
|
||
|
|
||
|
sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes);
|
||
|
if (static_cast<float>(fabs(t_result() - t_result_gpu())) > 1e-4f &&
|
||
|
!Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
|
||
|
std::cout << "mismatch detected: " << t_result()
|
||
|
<< " vs " << t_result_gpu() << std::endl;
|
||
|
assert(false);
|
||
|
}
|
||
|
|
||
|
sycl_device.deallocate(d_t_left);
|
||
|
sycl_device.deallocate(d_t_right);
|
||
|
sycl_device.deallocate(d_t_result);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_sycl_contraction_m(const Device& sycl_device) {
|
||
|
for (int k = 32; k < 256; k++) {
|
||
|
test_sycl_contraction<DataLayout>(sycl_device, k, 128, 128);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_sycl_contraction_k(const Device& sycl_device) {
|
||
|
for (int k = 32; k < 256; k++) {
|
||
|
test_sycl_contraction<DataLayout>(sycl_device, 128, k, 128);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_sycl_contraction_n(const Device& sycl_device) {
|
||
|
for (int k = 32; k < 256; k++) {
|
||
|
test_sycl_contraction<DataLayout>(sycl_device, 128, 128, k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
template<int DataLayout, typename Device>
|
||
|
void test_sycl_contraction_sizes(const Device& sycl_device) {
|
||
|
int m_sizes[] = { 31, 39, 63, 64, 65,
|
||
|
127, 129, 255, 257 , 511,
|
||
|
512, 513, 1023, 1024, 1025};
|
||
|
|
||
|
int n_sizes[] = { 31, 39, 63, 64, 65,
|
||
|
127, 129, 255, 257, 511,
|
||
|
512, 513, 1023, 1024, 1025};
|
||
|
|
||
|
int k_sizes[] = { 31, 39, 63, 64, 65,
|
||
|
95, 96, 127, 129, 255,
|
||
|
257, 511, 512, 513, 1023,
|
||
|
1024, 1025};
|
||
|
|
||
|
for (int i = 0; i < 15; i++) {
|
||
|
for (int j = 0; j < 15; j++) {
|
||
|
for (int k = 0; k < 17; k++) {
|
||
|
test_sycl_contraction<DataLayout>(sycl_device, m_sizes[i], n_sizes[j], k_sizes[k]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Dev_selector> void tensorContractionPerDevice(Dev_selector& s){
|
||
|
QueueInterface queueInterface(s);
|
||
|
auto sycl_device=Eigen::SyclDevice(&queueInterface);
|
||
|
test_sycl_contraction<ColMajor>(sycl_device, 32, 32, 32);
|
||
|
test_sycl_contraction<RowMajor>(sycl_device, 32, 32, 32);
|
||
|
test_scalar<ColMajor>(sycl_device, 32, 32, 32);
|
||
|
test_scalar<RowMajor>(sycl_device, 32, 32, 32);
|
||
|
std::chrono::time_point<std::chrono::system_clock> start, end;
|
||
|
start = std::chrono::system_clock::now();
|
||
|
test_sycl_contraction<ColMajor>(sycl_device, 128, 128, 128);
|
||
|
test_sycl_contraction<RowMajor>(sycl_device, 128, 128, 128);
|
||
|
test_scalar<ColMajor>(sycl_device, 128, 128, 128);
|
||
|
test_scalar<RowMajor>(sycl_device, 128, 128, 128);
|
||
|
test_sycl_contraction_m<ColMajor>(sycl_device);
|
||
|
test_sycl_contraction_m<RowMajor>(sycl_device);
|
||
|
test_sycl_contraction_n<ColMajor>(sycl_device);
|
||
|
test_sycl_contraction_n<RowMajor>(sycl_device);
|
||
|
test_sycl_contraction_k<ColMajor>(sycl_device);
|
||
|
test_sycl_contraction_k<RowMajor>(sycl_device);
|
||
|
test_sycl_contraction_sizes<ColMajor>(sycl_device);
|
||
|
test_sycl_contraction_sizes<RowMajor>(sycl_device);
|
||
|
end = std::chrono::system_clock::now();
|
||
|
std::chrono::duration<double> elapsed_seconds = end-start;
|
||
|
std::time_t end_time = std::chrono::system_clock::to_time_t(end);
|
||
|
std::cout << "finished computation at " << std::ctime(&end_time)
|
||
|
<< "elapsed time: " << elapsed_seconds.count() << "s\n";
|
||
|
|
||
|
}
|
||
|
void test_cxx11_tensor_contract_sycl() {
|
||
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||
|
CALL_SUBTEST(tensorContractionPerDevice(device));
|
||
|
}
|
||
|
}
|