eigen/Eigen/src/Sparse/SparseMatrix.h

409 lines
12 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H
/** \class SparseMatrix
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
template<typename _Scalar, int _Flags>
struct ei_traits<SparseMatrix<_Scalar, _Flags> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = SparseBit | _Flags,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = FullyCoherentAccessPattern
};
};
template<typename _Scalar, int _Flags>
class SparseMatrix
: public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(SparseMatrix)
protected:
public:
typedef SparseMatrixBase<SparseMatrix> SparseBase;
enum {
RowMajor = SparseBase::RowMajor
};
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(RowMajor?RowMajorBit:0)> TransposedSparseMatrix;
int m_outerSize;
int m_innerSize;
int* m_outerIndex;
SparseArray<Scalar> m_data;
public:
inline int rows() const { return RowMajor ? m_outerSize : m_innerSize; }
inline int cols() const { return RowMajor ? m_innerSize : m_outerSize; }
inline int innerSize() const { return m_innerSize; }
inline int outerSize() const { return m_outerSize; }
inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
inline const Scalar* _valuePtr() const { return &m_data.value(0); }
inline Scalar* _valuePtr() { return &m_data.value(0); }
inline const int* _innerIndexPtr() const { return &m_data.index(0); }
inline int* _innerIndexPtr() { return &m_data.index(0); }
inline const int* _outerIndexPtr() const { return m_outerIndex; }
inline int* _outerIndexPtr() { return m_outerIndex; }
inline Scalar coeff(int row, int col) const
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int start = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
if (start==end)
return Scalar(0);
else if (end>0 && inner==m_data.index(end-1))
return m_data.value(end-1);
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const int* r = std::lower_bound(&m_data.index(start),&m_data.index(end-1),inner);
const int id = r-&m_data.index(0);
return ((*r==inner) && (id<end)) ? m_data.value(id) : Scalar(0);
}
inline Scalar& coeffRef(int row, int col)
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int start = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
int* r = std::lower_bound(&m_data.index(start),&m_data.index(end),inner);
const int id = r-&m_data.index(0);
ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
return m_data.value(id);
}
public:
class InnerIterator;
/** \returns the number of non zero coefficients */
inline int nonZeros() const { return m_data.size(); }
/** Initializes the filling process of \c *this.
* \param reserveSize approximate number of nonzeros
* Note that the matrix \c *this is zero-ed.
*/
inline void startFill(int reserveSize = 1000)
{
m_data.clear();
m_data.reserve(reserveSize);
for (int i=0; i<=m_outerSize; ++i)
m_outerIndex[i] = 0;
}
/**
*/
inline Scalar& fill(int row, int col)
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
int i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
--i;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
assert(m_outerIndex[outer+1] == m_data.size());
int id = m_outerIndex[outer+1];
m_outerIndex[outer+1]++;
m_data.append(0, inner);
return m_data.value(id);
}
/** Like fill() but with random inner coordinates.
*/
inline Scalar& fillrand(int row, int col)
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
// nothing special to do here
int i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
--i;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
//
assert(m_outerIndex[outer+1] == m_data.size() && "invalid outer index");
int startId = m_outerIndex[outer];
int id = m_outerIndex[outer+1]-1;
m_outerIndex[outer+1]++;
m_data.resize(id+2);
while ( (id >= startId) && (m_data.index(id) > inner) )
{
m_data.index(id+1) = m_data.index(id);
m_data.value(id+1) = m_data.value(id);
--id;
}
m_data.index(id+1) = inner;
return (m_data.value(id+1) = 0);
}
inline void endFill()
{
int size = m_data.size();
int i = m_outerSize;
// find the last filled column
while (i>=0 && m_outerIndex[i]==0)
--i;
i++;
while (i<=m_outerSize)
{
m_outerIndex[i] = size;
++i;
}
}
void resize(int rows, int cols)
{
const int outerSize = RowMajor ? rows : cols;
m_innerSize = RowMajor ? cols : rows;
m_data.clear();
if (m_outerSize != outerSize)
{
delete[] m_outerIndex;
m_outerIndex = new int [outerSize+1];
m_outerSize = outerSize;
}
}
void resizeNonZeros(int size)
{
m_data.resize(size);
}
inline SparseMatrix()
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{}
inline SparseMatrix(int rows, int cols)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
resize(rows, cols);
}
template<typename OtherDerived>
inline SparseMatrix(const MatrixBase<OtherDerived>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
*this = other.derived();
}
inline void swap(SparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_outerIndex, other.m_outerIndex);
std::swap(m_innerSize, other.m_innerSize);
std::swap(m_outerSize, other.m_outerSize);
m_data.swap(other.m_data);
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else
{
resize(other.rows(), other.cols());
memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(int));
m_data = other.m_data;
}
return *this;
}
template<typename OtherDerived>
inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
{
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
if (needToTranspose)
{
// two passes algorithm:
// 1 - compute the number of coeffs per dest inner vector
// 2 - do the actual copy/eval
// Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed
typedef typename ei_nested<OtherDerived,2>::type OtherCopy;
OtherCopy otherCopy(other.derived());
typedef typename ei_cleantype<OtherCopy>::type _OtherCopy;
resize(other.rows(), other.cols());
Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero();
// pass 1
// FIXME the above copy could be merged with that pass
for (int j=0; j<otherCopy.outerSize(); ++j)
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
m_outerIndex[it.index()]++;
// prefix sum
int count = 0;
VectorXi positions(outerSize());
for (int j=0; j<outerSize(); ++j)
{
int tmp = m_outerIndex[j];
m_outerIndex[j] = count;
positions[j] = count;
count += tmp;
}
m_outerIndex[outerSize()] = count;
// alloc
m_data.resize(count);
// pass 2
for (int j=0; j<otherCopy.outerSize(); ++j)
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
{
int pos = positions[it.index()]++;
m_data.index(pos) = j;
m_data.value(pos) = it.value();
}
return *this;
}
else
{
// there is no special optimization
return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
}
}
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
{
EIGEN_DBG_SPARSE(
s << "Nonzero entries:\n";
for (uint i=0; i<m.nonZeros(); ++i)
{
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
}
s << std::endl;
s << std::endl;
s << "Column pointers:\n";
for (uint i=0; i<m.cols(); ++i)
{
s << m.m_outerIndex[i] << " ";
}
s << std::endl;
s << std::endl;
);
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
return s;
}
#ifdef EIGEN_TAUCS_SUPPORT
static SparseMatrix Map(taucs_ccs_matrix& taucsMatrix);
taucs_ccs_matrix asTaucsMatrix();
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT
static SparseMatrix Map(cholmod_sparse& cholmodMatrix);
cholmod_sparse asCholmodMatrix();
#endif
#ifdef EIGEN_SUPERLU_SUPPORT
static SparseMatrix Map(SluMatrix& sluMatrix);
SluMatrix asSluMatrix();
#endif
/** Destructor */
inline ~SparseMatrix()
{
delete[] m_outerIndex;
}
};
template<typename Scalar, int _Flags>
class SparseMatrix<Scalar,_Flags>::InnerIterator
{
public:
InnerIterator(const SparseMatrix& mat, int outer)
: m_matrix(mat), m_id(mat.m_outerIndex[outer]), m_start(m_id), m_end(mat.m_outerIndex[outer+1])
{}
2008-09-03 03:55:26 +08:00
template<unsigned int Added, unsigned int Removed>
InnerIterator(const Flagged<SparseMatrix,Added,Removed>& mat, int outer)
: m_matrix(mat._expression()), m_id(m_matrix.m_outerIndex[outer]),
m_start(m_id), m_end(m_matrix.m_outerIndex[outer+1])
{}
InnerIterator& operator++() { m_id++; return *this; }
Scalar value() const { return m_matrix.m_data.value(m_id); }
int index() const { return m_matrix.m_data.index(m_id); }
operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const SparseMatrix& m_matrix;
int m_id;
const int m_start;
const int m_end;
};
#endif // EIGEN_SPARSEMATRIX_H