eigen/test/lu.cpp

190 lines
6.5 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
2009-11-17 06:05:12 +08:00
using namespace std;
template<typename MatrixType> void lu_non_invertible()
{
2009-11-17 06:05:12 +08:00
typedef typename MatrixType::Scalar Scalar;
/* this test covers the following files:
LU.h
*/
int rows, cols, cols2;
if(MatrixType::RowsAtCompileTime==Dynamic)
{
rows = ei_random<int>(20,200);
}
else
{
rows = MatrixType::RowsAtCompileTime;
}
if(MatrixType::ColsAtCompileTime==Dynamic)
{
cols = ei_random<int>(20,200);
cols2 = ei_random<int>(20,200);
}
else
{
cols2 = cols = MatrixType::ColsAtCompileTime;
}
typedef typename ei_kernel_retval_base<FullPivLU<MatrixType> >::ReturnMatrixType KernelMatrixType;
typedef typename ei_image_retval_base<FullPivLU<MatrixType> >::ReturnMatrixType ImageMatrixType;
typedef Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> DynamicMatrixType;
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime>
CMatrixType;
int rank = ei_random<int>(1, std::min(rows, cols)-1);
// The image of the zero matrix should consist of a single (zero) column vector
VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
MatrixType m1(rows, cols), m3(rows, cols2);
CMatrixType m2(cols, cols2);
createRandomMatrixOfRank(rank, rows, cols, m1);
FullPivLU<MatrixType> lu(m1);
2009-11-17 06:05:12 +08:00
// FIXME need better way to construct trapezoid matrices. extend triangularView to support rectangular.
DynamicMatrixType u(rows,cols);
for(int i = 0; i < rows; i++)
for(int j = 0; j < cols; j++)
u(i,j) = i>j ? Scalar(0) : lu.matrixLU()(i,j);
DynamicMatrixType l(rows,rows);
for(int i = 0; i < rows; i++)
for(int j = 0; j < rows; j++)
l(i,j) = (i<j || j>=cols) ? Scalar(0)
: i==j ? Scalar(1)
: lu.matrixLU()(i,j);
VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
KernelMatrixType m1kernel = lu.kernel();
ImageMatrixType m1image = lu.image(m1);
VERIFY(rank == lu.rank());
2009-01-21 03:06:39 +08:00
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
VERIFY(!lu.isInjective());
VERIFY(!lu.isInvertible());
2009-08-24 12:09:01 +08:00
VERIFY(!lu.isSurjective());
VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
VERIFY(m1image.fullPivLu().rank() == rank);
DynamicMatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
sidebyside << m1, m1image;
VERIFY(sidebyside.fullPivLu().rank() == rank);
m2 = CMatrixType::Random(cols,cols2);
m3 = m1*m2;
m2 = CMatrixType::Random(cols,cols2);
// test that the code, which does resize(), may be applied to an xpr
m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType> void lu_invertible()
{
/* this test covers the following files:
LU.h
*/
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
int size = ei_random<int>(10,200);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (ei_is_same_type<RealScalar,float>::ret)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
FullPivLU<MatrixType> lu(m1);
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
VERIFY(size == lu.rank());
VERIFY(lu.isInjective());
VERIFY(lu.isSurjective());
VERIFY(lu.isInvertible());
VERIFY(lu.image(m1).fullPivLu().isInvertible());
m3 = MatrixType::Random(size,size);
2009-09-23 08:58:29 +08:00
m2 = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
}
template<typename MatrixType> void lu_verify_assert()
{
MatrixType tmp;
FullPivLU<MatrixType> lu;
VERIFY_RAISES_ASSERT(lu.matrixLU())
VERIFY_RAISES_ASSERT(lu.permutationP())
VERIFY_RAISES_ASSERT(lu.permutationQ())
VERIFY_RAISES_ASSERT(lu.kernel())
VERIFY_RAISES_ASSERT(lu.image(tmp))
2009-09-23 08:58:29 +08:00
VERIFY_RAISES_ASSERT(lu.solve(tmp))
VERIFY_RAISES_ASSERT(lu.determinant())
VERIFY_RAISES_ASSERT(lu.rank())
VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
VERIFY_RAISES_ASSERT(lu.isInjective())
VERIFY_RAISES_ASSERT(lu.isSurjective())
VERIFY_RAISES_ASSERT(lu.isInvertible())
VERIFY_RAISES_ASSERT(lu.inverse())
PartialPivLU<MatrixType> plu;
VERIFY_RAISES_ASSERT(plu.matrixLU())
VERIFY_RAISES_ASSERT(plu.permutationP())
VERIFY_RAISES_ASSERT(plu.solve(tmp))
VERIFY_RAISES_ASSERT(plu.determinant())
VERIFY_RAISES_ASSERT(plu.inverse())
}
void test_lu()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
}
}