2009-03-23 22:38:59 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
2009-05-23 02:25:33 +08:00
|
|
|
// for linear algebra.
|
2009-03-23 22:38:59 +08:00
|
|
|
//
|
2010-06-25 05:21:58 +08:00
|
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
2012-07-24 22:17:59 +08:00
|
|
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
2009-03-23 22:38:59 +08:00
|
|
|
//
|
2012-07-14 02:42:47 +08:00
|
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
2009-03-23 22:38:59 +08:00
|
|
|
|
|
|
|
#include "main.h"
|
2010-06-04 05:59:57 +08:00
|
|
|
#include <limits>
|
2009-09-04 15:23:38 +08:00
|
|
|
#include <Eigen/Eigenvalues>
|
2009-03-23 22:38:59 +08:00
|
|
|
|
|
|
|
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|
|
|
{
|
2010-06-20 23:37:56 +08:00
|
|
|
typedef typename MatrixType::Index Index;
|
2009-03-23 22:38:59 +08:00
|
|
|
/* this test covers the following files:
|
|
|
|
EigenSolver.h
|
|
|
|
*/
|
2010-06-20 23:37:56 +08:00
|
|
|
Index rows = m.rows();
|
|
|
|
Index cols = m.cols();
|
2009-03-23 22:38:59 +08:00
|
|
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
|
|
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
|
|
|
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
|
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
|
|
|
|
|
|
|
EigenSolver<MatrixType> ei0(symmA);
|
2010-06-04 05:59:57 +08:00
|
|
|
VERIFY_IS_EQUAL(ei0.info(), Success);
|
2009-03-23 22:38:59 +08:00
|
|
|
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
|
|
|
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
|
|
|
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
|
|
|
|
|
|
|
EigenSolver<MatrixType> ei1(a);
|
2010-06-04 05:59:57 +08:00
|
|
|
VERIFY_IS_EQUAL(ei1.info(), Success);
|
2009-03-23 22:38:59 +08:00
|
|
|
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
|
|
|
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
2009-06-29 03:27:37 +08:00
|
|
|
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
2011-04-16 00:39:59 +08:00
|
|
|
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
|
2010-05-25 00:43:50 +08:00
|
|
|
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
2009-03-23 22:38:59 +08:00
|
|
|
|
2012-07-24 22:17:59 +08:00
|
|
|
EigenSolver<MatrixType> ei2;
|
2012-07-29 04:30:09 +08:00
|
|
|
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
2012-07-24 22:17:59 +08:00
|
|
|
VERIFY_IS_EQUAL(ei2.info(), Success);
|
|
|
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
|
|
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
|
|
|
if (rows > 2) {
|
2012-07-29 04:30:09 +08:00
|
|
|
ei2.setMaxIterations(1).compute(a);
|
2012-07-24 22:17:59 +08:00
|
|
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
2012-07-29 04:30:09 +08:00
|
|
|
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
|
2012-07-24 22:17:59 +08:00
|
|
|
}
|
|
|
|
|
2010-06-01 01:17:47 +08:00
|
|
|
EigenSolver<MatrixType> eiNoEivecs(a, false);
|
2010-06-04 05:59:57 +08:00
|
|
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
2010-06-01 01:17:47 +08:00
|
|
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
|
|
|
VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
|
|
|
|
|
2010-05-25 00:43:50 +08:00
|
|
|
MatrixType id = MatrixType::Identity(rows, cols);
|
|
|
|
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
|
2010-06-04 05:59:57 +08:00
|
|
|
|
|
|
|
if (rows > 2)
|
|
|
|
{
|
|
|
|
// Test matrix with NaN
|
|
|
|
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
|
|
|
EigenSolver<MatrixType> eiNaN(a);
|
|
|
|
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
|
|
|
|
}
|
2009-03-23 22:38:59 +08:00
|
|
|
}
|
|
|
|
|
2010-06-01 01:17:47 +08:00
|
|
|
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
|
2009-05-22 20:27:58 +08:00
|
|
|
{
|
|
|
|
EigenSolver<MatrixType> eig;
|
2010-06-01 01:17:47 +08:00
|
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
|
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
|
|
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
|
|
|
|
VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
|
|
|
|
|
|
|
MatrixType a = MatrixType::Random(m.rows(),m.cols());
|
|
|
|
eig.compute(a, false);
|
|
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
|
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
|
2009-05-22 20:27:58 +08:00
|
|
|
}
|
|
|
|
|
2009-03-23 22:38:59 +08:00
|
|
|
void test_eigensolver_generic()
|
|
|
|
{
|
2011-07-12 20:41:00 +08:00
|
|
|
int s;
|
2009-03-23 22:38:59 +08:00
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
2009-10-29 06:19:29 +08:00
|
|
|
CALL_SUBTEST_1( eigensolver(Matrix4f()) );
|
2011-07-12 20:41:00 +08:00
|
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
|
2009-03-23 22:38:59 +08:00
|
|
|
|
|
|
|
// some trivial but implementation-wise tricky cases
|
2009-10-29 06:19:29 +08:00
|
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
|
|
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
|
|
|
|
CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
|
|
|
|
CALL_SUBTEST_4( eigensolver(Matrix2d()) );
|
2009-03-23 22:38:59 +08:00
|
|
|
}
|
|
|
|
|
2010-06-01 01:17:47 +08:00
|
|
|
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
|
2011-07-12 20:41:00 +08:00
|
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
|
|
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
|
2010-06-01 01:17:47 +08:00
|
|
|
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
|
|
|
|
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
|
2010-04-21 23:15:57 +08:00
|
|
|
|
|
|
|
// Test problem size constructors
|
2011-07-12 20:41:00 +08:00
|
|
|
CALL_SUBTEST_5(EigenSolver<MatrixXf>(s));
|
2012-01-26 02:02:31 +08:00
|
|
|
|
|
|
|
// regression test for bug 410
|
|
|
|
CALL_SUBTEST_2(
|
|
|
|
{
|
|
|
|
MatrixXd A(1,1);
|
|
|
|
A(0,0) = std::sqrt(-1.);
|
|
|
|
Eigen::EigenSolver<MatrixXd> solver(A);
|
|
|
|
MatrixXd V(1, 1);
|
|
|
|
V(0,0) = solver.eigenvectors()(0,0).real();
|
|
|
|
}
|
|
|
|
);
|
2011-10-31 11:55:20 +08:00
|
|
|
|
|
|
|
EIGEN_UNUSED_VARIABLE(s)
|
2009-05-22 20:27:58 +08:00
|
|
|
}
|