eigen/test/eigensolver_generic.cpp

127 lines
4.6 KiB
C++
Raw Normal View History

2009-03-23 22:38:59 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
2009-03-23 22:38:59 +08:00
//
2010-06-25 05:21:58 +08:00
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
2009-03-23 22:38:59 +08:00
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
2009-03-23 22:38:59 +08:00
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
2009-03-23 22:38:59 +08:00
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
2010-06-20 23:37:56 +08:00
typedef typename MatrixType::Index Index;
2009-03-23 22:38:59 +08:00
/* this test covers the following files:
EigenSolver.h
*/
2010-06-20 23:37:56 +08:00
Index rows = m.rows();
Index cols = m.cols();
2009-03-23 22:38:59 +08:00
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
MatrixType a = MatrixType::Random(rows,cols);
MatrixType a1 = MatrixType::Random(rows,cols);
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
EigenSolver<MatrixType> ei0(symmA);
VERIFY_IS_EQUAL(ei0.info(), Success);
2009-03-23 22:38:59 +08:00
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
EigenSolver<MatrixType> ei1(a);
VERIFY_IS_EQUAL(ei1.info(), Success);
2009-03-23 22:38:59 +08:00
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
2009-03-23 22:38:59 +08:00
EigenSolver<MatrixType> ei2;
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
VERIFY_IS_EQUAL(ei2.info(), Success);
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
if (rows > 2) {
ei2.setMaxIterations(1).compute(a);
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
}
EigenSolver<MatrixType> eiNoEivecs(a, false);
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
if (rows > 2)
{
// Test matrix with NaN
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
EigenSolver<MatrixType> eiNaN(a);
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
}
2009-03-23 22:38:59 +08:00
}
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
{
EigenSolver<MatrixType> eig;
VERIFY_RAISES_ASSERT(eig.eigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
VERIFY_RAISES_ASSERT(eig.eigenvalues());
MatrixType a = MatrixType::Random(m.rows(),m.cols());
eig.compute(a, false);
VERIFY_RAISES_ASSERT(eig.eigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
}
2009-03-23 22:38:59 +08:00
void test_eigensolver_generic()
{
int s;
2009-03-23 22:38:59 +08:00
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eigensolver(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
2009-03-23 22:38:59 +08:00
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
CALL_SUBTEST_4( eigensolver(Matrix2d()) );
2009-03-23 22:38:59 +08:00
}
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
// Test problem size constructors
CALL_SUBTEST_5(EigenSolver<MatrixXf>(s));
// regression test for bug 410
CALL_SUBTEST_2(
{
MatrixXd A(1,1);
A(0,0) = std::sqrt(-1.);
Eigen::EigenSolver<MatrixXd> solver(A);
MatrixXd V(1, 1);
V(0,0) = solver.eigenvectors()(0,0).real();
}
);
EIGEN_UNUSED_VARIABLE(s)
}