2010-11-23 01:49:12 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
2012-07-14 02:42:47 +08:00
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
2010-11-23 01:49:12 +08:00
# include "common.h"
// y = alpha*A*x + beta*y
int EIGEN_BLAS_FUNC ( symv ) ( char * uplo , int * n , RealScalar * palpha , RealScalar * pa , int * lda , RealScalar * px , int * incx , RealScalar * pbeta , RealScalar * py , int * incy )
{
Scalar * a = reinterpret_cast < Scalar * > ( pa ) ;
Scalar * x = reinterpret_cast < Scalar * > ( px ) ;
Scalar * y = reinterpret_cast < Scalar * > ( py ) ;
Scalar alpha = * reinterpret_cast < Scalar * > ( palpha ) ;
Scalar beta = * reinterpret_cast < Scalar * > ( pbeta ) ;
// check arguments
int info = 0 ;
if ( UPLO ( * uplo ) = = INVALID ) info = 1 ;
else if ( * n < 0 ) info = 2 ;
else if ( * lda < std : : max ( 1 , * n ) ) info = 5 ;
else if ( * incx = = 0 ) info = 7 ;
else if ( * incy = = 0 ) info = 10 ;
if ( info )
return xerbla_ ( SCALAR_SUFFIX_UP " SYMV " , & info , 6 ) ;
if ( * n = = 0 )
return 0 ;
Scalar * actual_x = get_compact_vector ( x , * n , * incx ) ;
Scalar * actual_y = get_compact_vector ( y , * n , * incy ) ;
if ( beta ! = Scalar ( 1 ) )
{
if ( beta = = Scalar ( 0 ) ) vector ( actual_y , * n ) . setZero ( ) ;
else vector ( actual_y , * n ) * = beta ;
}
// TODO performs a direct call to the underlying implementation function
if ( UPLO ( * uplo ) = = UP ) vector ( actual_y , * n ) . noalias ( ) + = matrix ( a , * n , * n , * lda ) . selfadjointView < Upper > ( ) * ( alpha * vector ( actual_x , * n ) ) ;
else if ( UPLO ( * uplo ) = = LO ) vector ( actual_y , * n ) . noalias ( ) + = matrix ( a , * n , * n , * lda ) . selfadjointView < Lower > ( ) * ( alpha * vector ( actual_x , * n ) ) ;
if ( actual_x ! = x ) delete [ ] actual_x ;
if ( actual_y ! = y ) delete [ ] copy_back ( actual_y , y , * n , * incy ) ;
return 1 ;
}
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC ( syr ) ( char * uplo , int * n , RealScalar * palpha , RealScalar * px , int * incx , RealScalar * pc , int * ldc )
{
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
// init = true;
// }
Scalar * x = reinterpret_cast < Scalar * > ( px ) ;
Scalar * c = reinterpret_cast < Scalar * > ( pc ) ;
Scalar alpha = * reinterpret_cast < Scalar * > ( palpha ) ;
int info = 0 ;
if ( UPLO ( * uplo ) = = INVALID ) info = 1 ;
else if ( * n < 0 ) info = 2 ;
else if ( * incx = = 0 ) info = 5 ;
else if ( * ldc < std : : max ( 1 , * n ) ) info = 7 ;
if ( info )
return xerbla_ ( SCALAR_SUFFIX_UP " SYR " , & info , 6 ) ;
if ( * n = = 0 | | alpha = = Scalar ( 0 ) ) return 1 ;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar * x_cpy = get_compact_vector ( x , * n , * incx ) ;
Matrix < Scalar , Dynamic , Dynamic > m2 ( matrix ( c , * n , * n , * ldc ) ) ;
// TODO check why this is not accurate enough for lapack tests
// if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
// else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if ( UPLO ( * uplo ) = = LO )
for ( int j = 0 ; j < * n ; + + j )
matrix ( c , * n , * n , * ldc ) . col ( j ) . tail ( * n - j ) + = alpha * x_cpy [ j ] * vector ( x_cpy + j , * n - j ) ;
else
for ( int j = 0 ; j < * n ; + + j )
matrix ( c , * n , * n , * ldc ) . col ( j ) . head ( j + 1 ) + = alpha * x_cpy [ j ] * vector ( x_cpy , j + 1 ) ;
if ( x_cpy ! = x ) delete [ ] x_cpy ;
return 1 ;
}
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC ( syr2 ) ( char * uplo , int * n , RealScalar * palpha , RealScalar * px , int * incx , RealScalar * py , int * incy , RealScalar * pc , int * ldc )
{
// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
Scalar * x = reinterpret_cast < Scalar * > ( px ) ;
Scalar * y = reinterpret_cast < Scalar * > ( py ) ;
Scalar * c = reinterpret_cast < Scalar * > ( pc ) ;
Scalar alpha = * reinterpret_cast < Scalar * > ( palpha ) ;
int info = 0 ;
if ( UPLO ( * uplo ) = = INVALID ) info = 1 ;
else if ( * n < 0 ) info = 2 ;
else if ( * incx = = 0 ) info = 5 ;
else if ( * incy = = 0 ) info = 7 ;
else if ( * ldc < std : : max ( 1 , * n ) ) info = 9 ;
if ( info )
return xerbla_ ( SCALAR_SUFFIX_UP " SYR2 " , & info , 6 ) ;
if ( alpha = = Scalar ( 0 ) )
return 1 ;
Scalar * x_cpy = get_compact_vector ( x , * n , * incx ) ;
Scalar * y_cpy = get_compact_vector ( y , * n , * incy ) ;
// TODO perform direct calls to underlying implementation
if ( UPLO ( * uplo ) = = LO ) matrix ( c , * n , * n , * ldc ) . selfadjointView < Lower > ( ) . rankUpdate ( vector ( x_cpy , * n ) , vector ( y_cpy , * n ) , alpha ) ;
else if ( UPLO ( * uplo ) = = UP ) matrix ( c , * n , * n , * ldc ) . selfadjointView < Upper > ( ) . rankUpdate ( vector ( x_cpy , * n ) , vector ( y_cpy , * n ) , alpha ) ;
if ( x_cpy ! = x ) delete [ ] x_cpy ;
if ( y_cpy ! = y ) delete [ ] y_cpy ;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1 ;
}
/** DSBMV performs the matrix-vector operation
*
* y : = alpha * A * x + beta * y ,
*
* where alpha and beta are scalars , x and y are n element vectors and
* A is an n by n symmetric band matrix , with k super - diagonals .
*/
// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPMV performs the matrix-vector operation
*
* y : = alpha * A * x + beta * y ,
*
* where alpha and beta are scalars , x and y are n element vectors and
* A is an n by n symmetric matrix , supplied in packed form .
*
*/
// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPR performs the symmetric rank 1 operation
*
* A : = alpha * x * x ' + A ,
*
* where alpha is a real scalar , x is an n element vector and A is an
* n by n symmetric matrix , supplied in packed form .
*/
// int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
// {
// return 1;
// }
/** DSPR2 performs the symmetric rank 2 operation
*
* A : = alpha * x * y ' + alpha * y * x ' + A ,
*
* where alpha is a scalar , x and y are n element vectors and A is an
* n by n symmetric matrix , supplied in packed form .
*/
// int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
// {
// return 1;
// }