eigen/blas/ztbmv.f

367 lines
12 KiB
FortranFixed
Raw Normal View History

SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
* .. Scalar Arguments ..
INTEGER INCX,K,LDA,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
DOUBLE COMPLEX A(LDA,*),X(*)
* ..
*
* Purpose
* =======
*
* ZTBMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x, or x := conjg( A' )*x,
*
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' x := A*x.
*
* TRANS = 'T' or 't' x := A'*x.
*
* TRANS = 'C' or 'c' x := conjg( A' )*x.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit
* triangular as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry with UPLO = 'U' or 'u', K specifies the number of
* super-diagonals of the matrix A.
* On entry with UPLO = 'L' or 'l', K specifies the number of
* sub-diagonals of the matrix A.
* K must satisfy 0 .le. K.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
* by n part of the array A must contain the upper triangular
* band part of the matrix of coefficients, supplied column by
* column, with the leading diagonal of the matrix in row
* ( k + 1 ) of the array, the first super-diagonal starting at
* position 2 in row k, and so on. The top left k by k triangle
* of the array A is not referenced.
* The following program segment will transfer an upper
* triangular band matrix from conventional full matrix storage
* to band storage:
*
* DO 20, J = 1, N
* M = K + 1 - J
* DO 10, I = MAX( 1, J - K ), J
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
* by n part of the array A must contain the lower triangular
* band part of the matrix of coefficients, supplied column by
* column, with the leading diagonal of the matrix in row 1 of
* the array, the first sub-diagonal starting at position 1 in
* row 2, and so on. The bottom right k by k triangle of the
* array A is not referenced.
* The following program segment will transfer a lower
* triangular band matrix from conventional full matrix storage
* to band storage:
*
* DO 20, J = 1, N
* M = 1 - J
* DO 10, I = J, MIN( N, J + K )
* A( M + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Note that when DIAG = 'U' or 'u' the elements of the array A
* corresponding to the diagonal elements of the matrix are not
* referenced, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( k + 1 ).
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x. On exit, X is overwritten with the
* tranformed vector x.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE COMPLEX ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
* .. Local Scalars ..
DOUBLE COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
LOGICAL NOCONJ,NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG,MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (K.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (K+1)) THEN
INFO = 7
ELSE IF (INCX.EQ.0) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZTBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOCONJ = LSAME(TRANS,'T')
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x := A*x.
*
IF (LSAME(UPLO,'U')) THEN
KPLUS1 = K + 1
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
L = KPLUS1 - J
DO 10 I = MAX(1,J-K),J - 1
X(I) = X(I) + TEMP*A(L+I,J)
10 CONTINUE
IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
L = KPLUS1 - J
DO 30 I = MAX(1,J-K),J - 1
X(IX) = X(IX) + TEMP*A(L+I,J)
IX = IX + INCX
30 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
END IF
JX = JX + INCX
IF (J.GT.K) KX = KX + INCX
40 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 60 J = N,1,-1
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
L = 1 - J
DO 50 I = MIN(N,J+K),J + 1,-1
X(I) = X(I) + TEMP*A(L+I,J)
50 CONTINUE
IF (NOUNIT) X(J) = X(J)*A(1,J)
END IF
60 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 80 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
L = 1 - J
DO 70 I = MIN(N,J+K),J + 1,-1
X(IX) = X(IX) + TEMP*A(L+I,J)
IX = IX - INCX
70 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*A(1,J)
END IF
JX = JX - INCX
IF ((N-J).GE.K) KX = KX - INCX
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := A'*x or x := conjg( A' )*x.
*
IF (LSAME(UPLO,'U')) THEN
KPLUS1 = K + 1
IF (INCX.EQ.1) THEN
DO 110 J = N,1,-1
TEMP = X(J)
L = KPLUS1 - J
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
DO 90 I = J - 1,MAX(1,J-K),-1
TEMP = TEMP + A(L+I,J)*X(I)
90 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
DO 100 I = J - 1,MAX(1,J-K),-1
TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
100 CONTINUE
END IF
X(J) = TEMP
110 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 140 J = N,1,-1
TEMP = X(JX)
KX = KX - INCX
IX = KX
L = KPLUS1 - J
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
DO 120 I = J - 1,MAX(1,J-K),-1
TEMP = TEMP + A(L+I,J)*X(IX)
IX = IX - INCX
120 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
DO 130 I = J - 1,MAX(1,J-K),-1
TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
IX = IX - INCX
130 CONTINUE
END IF
X(JX) = TEMP
JX = JX - INCX
140 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 170 J = 1,N
TEMP = X(J)
L = 1 - J
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*A(1,J)
DO 150 I = J + 1,MIN(N,J+K)
TEMP = TEMP + A(L+I,J)*X(I)
150 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
DO 160 I = J + 1,MIN(N,J+K)
TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
160 CONTINUE
END IF
X(J) = TEMP
170 CONTINUE
ELSE
JX = KX
DO 200 J = 1,N
TEMP = X(JX)
KX = KX + INCX
IX = KX
L = 1 - J
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*A(1,J)
DO 180 I = J + 1,MIN(N,J+K)
TEMP = TEMP + A(L+I,J)*X(IX)
IX = IX + INCX
180 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
DO 190 I = J + 1,MIN(N,J+K)
TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
IX = IX + INCX
190 CONTINUE
END IF
X(JX) = TEMP
JX = JX + INCX
200 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of ZTBMV .
*
END