2009-09-25 19:08:39 +08:00
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
|
|
// for linear algebra.
|
|
|
|
//
|
2010-10-09 05:31:57 +08:00
|
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
2009-09-25 19:08:39 +08:00
|
|
|
//
|
|
|
|
// Eigen is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 3 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Alternatively, you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU General Public License as
|
|
|
|
// published by the Free Software Foundation; either version 2 of
|
|
|
|
// the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License and a copy of the GNU General Public License along with
|
|
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc)
|
|
|
|
{
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
|
|
|
|
if(beta!=Scalar(1))
|
|
|
|
vector(c, *m, *incc) *= beta;
|
|
|
|
|
|
|
|
if(OP(*opa)==NOTR)
|
|
|
|
if(*incc==1)
|
|
|
|
vector(c,*m) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb);
|
|
|
|
else
|
|
|
|
vector(c,*m,*incc) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb);
|
|
|
|
else if(OP(*opa)==TR)
|
|
|
|
if(*incb==1)
|
|
|
|
vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n);
|
|
|
|
else
|
|
|
|
vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n,*incb);
|
|
|
|
else if(OP(*opa)==TR)
|
|
|
|
if(*incb==1)
|
|
|
|
vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n);
|
|
|
|
else
|
|
|
|
vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n,*incb);
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2010-03-03 16:32:10 +08:00
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
|
|
|
|
{
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
typedef void (*functype)(int, const Scalar *, int, Scalar *, int);
|
|
|
|
functype func[16];
|
|
|
|
|
|
|
|
static bool init = false;
|
|
|
|
if(!init)
|
|
|
|
{
|
|
|
|
for(int k=0; k<16; ++k)
|
|
|
|
func[k] = 0;
|
|
|
|
|
|
|
|
// func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, false,ColMajor,ColMajor>::run);
|
|
|
|
// func[TR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, false,RowMajor,ColMajor>::run);
|
|
|
|
// func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, false,ColMajor,ColMajor>::run);
|
|
|
|
// func[TR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, false,RowMajor,ColMajor>::run);
|
|
|
|
// func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (UP << 3) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
|
|
// func[TR | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
|
|
// func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
|
|
// func[TR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
|
|
// func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
|
|
|
|
init = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
|
|
|
|
|
|
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
|
|
|
if(code>=16 || func[code]==0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
func[code](*n, a, *lda, b, *incb);
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
2009-09-25 19:08:39 +08:00
|
|
|
}
|
|
|
|
|
2010-03-03 16:32:10 +08:00
|
|
|
|
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
|
|
|
|
{
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
2009-09-25 19:08:39 +08:00
|
|
|
// TODO
|
|
|
|
|
|
|
|
typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int);
|
|
|
|
functype func[16];
|
|
|
|
|
|
|
|
static bool init = false;
|
|
|
|
if(!init)
|
|
|
|
{
|
|
|
|
for(int k=0; k<16; ++k)
|
|
|
|
func[k] = 0;
|
|
|
|
|
|
|
|
// func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[TR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[TR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[TR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
//
|
|
|
|
// func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[TR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
|
|
// func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
|
|
|
|
init = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
|
|
|
|
|
|
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
|
|
|
if(code>=16 || func[code]==0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
func[code](*n, a, *lda, b, *incb, b, *incb);
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// y = alpha*A*x + beta*y
|
2010-10-09 05:31:57 +08:00
|
|
|
int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
|
2010-03-03 16:32:10 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// TODO
|
2009-09-25 19:08:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pc, int *ldc)
|
|
|
|
{
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
// TODO
|
|
|
|
typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
|
|
|
|
functype func[2];
|
|
|
|
|
|
|
|
static bool init = false;
|
|
|
|
if(!init)
|
|
|
|
{
|
|
|
|
for(int k=0; k<2; ++k)
|
|
|
|
func[k] = 0;
|
|
|
|
|
|
|
|
// func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
|
|
|
|
// func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
|
|
|
|
|
|
|
|
init = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
|
|
|
|
int code = UPLO(*uplo);
|
|
|
|
if(code>=2 || func[code]==0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
func[code](*n, a, *inca, c, *ldc, alpha);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2010-03-03 16:32:10 +08:00
|
|
|
|
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pb, int *incb, RealScalar *pc, int *ldc)
|
|
|
|
{
|
2010-03-03 16:32:10 +08:00
|
|
|
return 0;
|
|
|
|
|
2009-09-25 19:08:39 +08:00
|
|
|
// TODO
|
|
|
|
typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
|
|
functype func[2];
|
|
|
|
|
|
|
|
static bool init = false;
|
|
|
|
if(!init)
|
|
|
|
{
|
|
|
|
for(int k=0; k<2; ++k)
|
|
|
|
func[k] = 0;
|
|
|
|
|
|
|
|
// func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
|
|
|
|
// func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
|
|
|
|
|
|
|
|
init = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
|
|
|
|
int code = UPLO(*uplo);
|
|
|
|
if(code>=2 || func[code]==0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
|
|
|
|
return 1;
|
|
|
|
}
|
2010-03-03 16:32:10 +08:00
|
|
|
|
2010-10-09 05:31:57 +08:00
|
|
|
/** DGBMV performs one of the matrix-vector operations
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are vectors and A is an
|
|
|
|
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
|
|
|
|
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/** DSBMV performs the matrix-vector operation
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
|
|
* A is an n by n symmetric band matrix, with k super-diagonals.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
|
|
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DTBMV performs one of the matrix-vector operations
|
|
|
|
*
|
|
|
|
* x := A*x, or x := A'*x,
|
|
|
|
*
|
|
|
|
* where x is an n element vector and A is an n by n unit, or non-unit,
|
|
|
|
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DTBSV solves one of the systems of equations
|
|
|
|
*
|
|
|
|
* A*x = b, or A'*x = b,
|
|
|
|
*
|
|
|
|
* where b and x are n element vectors and A is an n by n unit, or
|
|
|
|
* non-unit, upper or lower triangular band matrix, with ( k + 1 )
|
|
|
|
* diagonals.
|
|
|
|
*
|
|
|
|
* No test for singularity or near-singularity is included in this
|
|
|
|
* routine. Such tests must be performed before calling this routine.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DSPMV performs the matrix-vector operation
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
|
|
* A is an n by n symmetric matrix, supplied in packed form.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DTPMV performs one of the matrix-vector operations
|
|
|
|
*
|
|
|
|
* x := A*x, or x := A'*x,
|
|
|
|
*
|
|
|
|
* where x is an n element vector and A is an n by n unit, or non-unit,
|
|
|
|
* upper or lower triangular matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DTPSV solves one of the systems of equations
|
|
|
|
*
|
|
|
|
* A*x = b, or A'*x = b,
|
|
|
|
*
|
|
|
|
* where b and x are n element vectors and A is an n by n unit, or
|
|
|
|
* non-unit, upper or lower triangular matrix, supplied in packed form.
|
|
|
|
*
|
|
|
|
* No test for singularity or near-singularity is included in this
|
|
|
|
* routine. Such tests must be performed before calling this routine.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DGER performs the rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*y' + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
|
|
* vector and A is an m by n matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *y, int *incy, Scalar *a, int *lda)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** DSPR performs the symmetric rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*x' + A,
|
|
|
|
*
|
|
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
|
|
* n by n symmetric matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/** DSPR2 performs the symmetric rank 2 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*y' + alpha*y*x' + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
|
|
* n by n symmetric matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2009-09-25 19:08:39 +08:00
|
|
|
|
|
|
|
#if ISCOMPLEX
|
2010-10-09 05:31:57 +08:00
|
|
|
/** ZHEMV performs the matrix-vector operation
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
|
|
* A is an n by n hermitian matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *x, int *incx, RealScalar *pbeta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZHBMV performs the matrix-vector operation
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
|
|
* A is an n by n hermitian band matrix, with k super-diagonals.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
|
|
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZHPMV performs the matrix-vector operation
|
|
|
|
*
|
|
|
|
* y := alpha*A*x + beta*y,
|
|
|
|
*
|
|
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
|
|
* A is an n by n hermitian matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2009-09-25 19:08:39 +08:00
|
|
|
|
2010-10-09 05:31:57 +08:00
|
|
|
/** ZHPR performs the hermitian rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
|
|
*
|
|
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZHPR2 performs the hermitian rank 2 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZHER performs the hermitian rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
|
|
*
|
|
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
|
|
* n by n hermitian matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *a, int *lda)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZHER2 performs the hermitian rank 2 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x and y are n element vectors and A is an n
|
|
|
|
* by n hermitian matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *a, int *lda)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZGERU performs the rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*y' + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
|
|
* vector and A is an m by n matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *a, int *lda)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** ZGERC performs the rank 1 operation
|
|
|
|
*
|
|
|
|
* A := alpha*x*conjg( y' ) + A,
|
|
|
|
*
|
|
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
|
|
* vector and A is an m by n matrix.
|
|
|
|
*/
|
|
|
|
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *a, int *lda)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2009-09-25 19:08:39 +08:00
|
|
|
#endif // ISCOMPLEX
|