2012-07-27 02:15:17 +08:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
# ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
# define EIGEN_GENERALIZEDEIGENSOLVER_H
# include "./RealQZ.h"
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
2012-07-29 00:00:54 +08:00
* \ class GeneralizedEigenSolver
2012-07-27 02:15:17 +08:00
*
* \ brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
*
* \ tparam _MatrixType the type of the matrices of which we are computing the
* eigen - decomposition ; this is expected to be an instantiation of the Matrix
* class template . Currently , only real matrices are supported .
*
* The generalized eigenvalues and eigenvectors of a matrix pair \ f $ A \ f $ and \ f $ B \ f $ are scalars
* \ f $ \ lambda \ f $ and vectors \ f $ v \ f $ such that \ f $ Av = \ lambda Bv \ f $ . If
* \ f $ D \ f $ is a diagonal matrix with the eigenvalues on the diagonal , and
* \ f $ V \ f $ is a matrix with the eigenvectors as its columns , then \ f $ A V =
* B V D \ f $ . The matrix \ f $ V \ f $ is almost always invertible , in which case we
* have \ f $ A = B V D V ^ { - 1 } \ f $ . This is called the generalized eigen - decomposition .
*
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex , even when the
* matrices are real . Moreover , the generalized eigenvalue might be infinite if the matrix B is
* singular . To workaround this difficulty , the eigenvalues are provided as a pair of complex \ f $ \ alpha \ f $
* and real \ f $ \ beta \ f $ such that : \ f $ \ lambda_i = \ alpha_i / \ beta_i \ f $ . If \ f $ \ beta_i \ f $ is ( nearly ) zero ,
* then one can consider the well defined left eigenvalue \ f $ \ mu = \ beta_i / \ alpha_i \ f $ such that :
* \ f $ \ mu_i A v_i = B v_i \ f $ , or even \ f $ \ mu_i u_i ^ T A = u_i ^ T B \ f $ where \ f $ u_i \ f $ is
* called the left eigenvector .
*
* Call the function compute ( ) to compute the generalized eigenvalues and eigenvectors of
* a given matrix pair . Alternatively , you can use the
* GeneralizedEigenSolver ( const MatrixType & , const MatrixType & , bool ) constructor which computes the
* eigenvalues and eigenvectors at construction time . Once the eigenvalue and
* eigenvectors are computed , they can be retrieved with the eigenvalues ( ) and
* eigenvectors ( ) functions .
*
2012-07-29 00:00:54 +08:00
* Here is an usage example of this class :
* Example : \ include GeneralizedEigenSolver . cpp
* Output : \ verbinclude GeneralizedEigenSolver . out
2012-07-27 02:15:17 +08:00
*
* \ sa MatrixBase : : eigenvalues ( ) , class ComplexEigenSolver , class SelfAdjointEigenSolver
*/
template < typename _MatrixType > class GeneralizedEigenSolver
{
public :
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType ;
enum {
RowsAtCompileTime = MatrixType : : RowsAtCompileTime ,
ColsAtCompileTime = MatrixType : : ColsAtCompileTime ,
Options = MatrixType : : Options ,
MaxRowsAtCompileTime = MatrixType : : MaxRowsAtCompileTime ,
MaxColsAtCompileTime = MatrixType : : MaxColsAtCompileTime
} ;
/** \brief Scalar type for matrices of type #MatrixType. */
typedef typename MatrixType : : Scalar Scalar ;
typedef typename NumTraits < Scalar > : : Real RealScalar ;
2015-02-16 21:46:51 +08:00
typedef Eigen : : Index Index ; ///< \deprecated since Eigen 3.3
2012-07-27 02:15:17 +08:00
/** \brief Complex scalar type for #MatrixType.
*
* This is \ c std : : complex < Scalar > if # Scalar is real ( e . g . ,
* \ c float or \ c double ) and just \ c Scalar if # Scalar is
* complex .
*/
typedef std : : complex < RealScalar > ComplexScalar ;
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type # Scalar .
* The length of the vector is the size of # MatrixType .
*/
typedef Matrix < Scalar , ColsAtCompileTime , 1 , Options & ~ RowMajor , MaxColsAtCompileTime , 1 > VectorType ;
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type # ComplexScalar .
* The length of the vector is the size of # MatrixType .
*/
typedef Matrix < ComplexScalar , ColsAtCompileTime , 1 , Options & ~ RowMajor , MaxColsAtCompileTime , 1 > ComplexVectorType ;
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
*/
typedef CwiseBinaryOp < internal : : scalar_quotient_op < ComplexScalar , Scalar > , ComplexVectorType , VectorType > EigenvalueType ;
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
*
* This is a square matrix with entries of type # ComplexScalar .
* The size is the same as the size of # MatrixType .
*/
typedef Matrix < ComplexScalar , RowsAtCompileTime , ColsAtCompileTime , Options , MaxRowsAtCompileTime , MaxColsAtCompileTime > EigenvectorsType ;
/** \brief Default constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver : : compute ( const MatrixType & , bool ) .
*
* \ sa compute ( ) for an example .
*/
GeneralizedEigenSolver ( ) : m_eivec ( ) , m_alphas ( ) , m_betas ( ) , m_isInitialized ( false ) , m_realQZ ( ) , m_matS ( ) , m_tmp ( ) { }
/** \brief Default constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \ a size .
* \ sa GeneralizedEigenSolver ( )
*/
2014-09-23 20:28:23 +08:00
explicit GeneralizedEigenSolver ( Index size )
2012-07-27 02:15:17 +08:00
: m_eivec ( size , size ) ,
m_alphas ( size ) ,
m_betas ( size ) ,
m_isInitialized ( false ) ,
m_eigenvectorsOk ( false ) ,
m_realQZ ( size ) ,
m_matS ( size , size ) ,
m_tmp ( size )
{ }
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
*
* \ param [ in ] A Square matrix whose eigendecomposition is to be computed .
* \ param [ in ] B Square matrix whose eigendecomposition is to be computed .
* \ param [ in ] computeEigenvectors If true , both the eigenvectors and the
* eigenvalues are computed ; if false , only the eigenvalues are computed .
*
* This constructor calls compute ( ) to compute the generalized eigenvalues
* and eigenvectors .
*
* \ sa compute ( )
*/
2015-12-11 17:59:39 +08:00
GeneralizedEigenSolver ( const MatrixType & A , const MatrixType & B , bool computeEigenvectors = true )
2012-07-27 02:15:17 +08:00
: m_eivec ( A . rows ( ) , A . cols ( ) ) ,
m_alphas ( A . cols ( ) ) ,
m_betas ( A . cols ( ) ) ,
m_isInitialized ( false ) ,
m_eigenvectorsOk ( false ) ,
m_realQZ ( A . cols ( ) ) ,
m_matS ( A . rows ( ) , A . cols ( ) ) ,
m_tmp ( A . cols ( ) )
{
compute ( A , B , computeEigenvectors ) ;
}
2012-07-29 00:00:54 +08:00
/* \brief Returns the computed generalized eigenvectors.
2012-07-27 02:15:17 +08:00
*
* \ returns % Matrix whose columns are the ( possibly complex ) eigenvectors .
*
* \ pre Either the constructor
* GeneralizedEigenSolver ( const MatrixType & , const MatrixType & , bool ) or the member function
* compute ( const MatrixType & , const MatrixType & bool ) has been called before , and
* \ p computeEigenvectors was set to true ( the default ) .
*
* Column \ f $ k \ f $ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \ f $ k \ f $ as returned by eigenvalues ( ) . The
* eigenvectors are normalized to have ( Euclidean ) norm equal to one . The
* matrix returned by this function is the matrix \ f $ V \ f $ in the
* generalized eigendecomposition \ f $ A = B V D V ^ { - 1 } \ f $ , if it exists .
*
* \ sa eigenvalues ( )
*/
2012-07-29 00:00:54 +08:00
// EigenvectorsType eigenvectors() const;
2012-07-27 02:15:17 +08:00
/** \brief Returns an expression of the computed generalized eigenvalues.
*
* \ returns An expression of the column vector containing the eigenvalues .
*
* It is a shortcut for \ code this - > alphas ( ) . cwiseQuotient ( this - > betas ( ) ) ; \ endcode
* Not that betas might contain zeros . It is therefore not recommended to use this function ,
* but rather directly deal with the alphas and betas vectors .
*
* \ pre Either the constructor
* GeneralizedEigenSolver ( const MatrixType & , const MatrixType & , bool ) or the member function
* compute ( const MatrixType & , const MatrixType & , bool ) has been called before .
*
* The eigenvalues are repeated according to their algebraic multiplicity ,
* so there are as many eigenvalues as rows in the matrix . The eigenvalues
* are not sorted in any particular order .
*
* \ sa alphas ( ) , betas ( ) , eigenvectors ( )
*/
EigenvalueType eigenvalues ( ) const
{
eigen_assert ( m_isInitialized & & " GeneralizedEigenSolver is not initialized. " ) ;
return EigenvalueType ( m_alphas , m_betas ) ;
}
/** \returns A const reference to the vectors containing the alpha values
*
* This vector permits to reconstruct the j - th eigenvalues as alphas ( i ) / betas ( j ) .
*
* \ sa betas ( ) , eigenvalues ( ) */
ComplexVectorType alphas ( ) const
{
eigen_assert ( m_isInitialized & & " GeneralizedEigenSolver is not initialized. " ) ;
return m_alphas ;
}
/** \returns A const reference to the vectors containing the beta values
*
* This vector permits to reconstruct the j - th eigenvalues as alphas ( i ) / betas ( j ) .
*
* \ sa alphas ( ) , eigenvalues ( ) */
VectorType betas ( ) const
{
eigen_assert ( m_isInitialized & & " GeneralizedEigenSolver is not initialized. " ) ;
return m_betas ;
}
/** \brief Computes generalized eigendecomposition of given matrix.
*
* \ param [ in ] A Square matrix whose eigendecomposition is to be computed .
* \ param [ in ] B Square matrix whose eigendecomposition is to be computed .
* \ param [ in ] computeEigenvectors If true , both the eigenvectors and the
* eigenvalues are computed ; if false , only the eigenvalues are
* computed .
* \ returns Reference to \ c * this
*
* This function computes the eigenvalues of the real matrix \ p matrix .
* The eigenvalues ( ) function can be used to retrieve them . If
* \ p computeEigenvectors is true , then the eigenvectors are also computed
* and can be retrieved by calling eigenvectors ( ) .
*
* The matrix is first reduced to real generalized Schur form using the RealQZ
* class . The generalized Schur decomposition is then used to compute the eigenvalues
* and eigenvectors .
*
* The cost of the computation is dominated by the cost of the
* generalized Schur decomposition .
*
* This method reuses of the allocated data in the GeneralizedEigenSolver object .
*/
GeneralizedEigenSolver & compute ( const MatrixType & A , const MatrixType & B , bool computeEigenvectors = true ) ;
ComputationInfo info ( ) const
{
eigen_assert ( m_isInitialized & & " EigenSolver is not initialized. " ) ;
return m_realQZ . info ( ) ;
}
/** Sets the maximal number of iterations allowed.
*/
GeneralizedEigenSolver & setMaxIterations ( Index maxIters )
{
m_realQZ . setMaxIterations ( maxIters ) ;
return * this ;
}
protected :
2015-03-14 04:06:20 +08:00
static void check_template_parameters ( )
{
EIGEN_STATIC_ASSERT_NON_INTEGER ( Scalar ) ;
EIGEN_STATIC_ASSERT ( ! NumTraits < Scalar > : : IsComplex , NUMERIC_TYPE_MUST_BE_REAL ) ;
}
2012-07-27 02:15:17 +08:00
MatrixType m_eivec ;
ComplexVectorType m_alphas ;
VectorType m_betas ;
bool m_isInitialized ;
bool m_eigenvectorsOk ;
RealQZ < MatrixType > m_realQZ ;
MatrixType m_matS ;
typedef Matrix < Scalar , ColsAtCompileTime , 1 , Options & ~ RowMajor , MaxColsAtCompileTime , 1 > ColumnVectorType ;
ColumnVectorType m_tmp ;
} ;
//template<typename MatrixType>
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
//{
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
// Index n = m_eivec.cols();
// EigenvectorsType matV(n,n);
// // TODO
// return matV;
//}
template < typename MatrixType >
GeneralizedEigenSolver < MatrixType > &
GeneralizedEigenSolver < MatrixType > : : compute ( const MatrixType & A , const MatrixType & B , bool computeEigenvectors )
{
2015-03-14 04:06:20 +08:00
check_template_parameters ( ) ;
2012-11-06 22:25:50 +08:00
using std : : sqrt ;
using std : : abs ;
2012-07-27 02:15:17 +08:00
eigen_assert ( A . cols ( ) = = A . rows ( ) & & B . cols ( ) = = A . rows ( ) & & B . cols ( ) = = B . rows ( ) ) ;
// Reduce to generalized real Schur form:
// A = Q S Z and B = Q T Z
m_realQZ . compute ( A , B , computeEigenvectors ) ;
if ( m_realQZ . info ( ) = = Success )
{
m_matS = m_realQZ . matrixS ( ) ;
2012-07-29 00:00:54 +08:00
if ( computeEigenvectors )
m_eivec = m_realQZ . matrixZ ( ) . transpose ( ) ;
2012-07-27 02:15:17 +08:00
// Compute eigenvalues from matS
m_alphas . resize ( A . cols ( ) ) ;
m_betas . resize ( A . cols ( ) ) ;
Index i = 0 ;
while ( i < A . cols ( ) )
{
if ( i = = A . cols ( ) - 1 | | m_matS . coeff ( i + 1 , i ) = = Scalar ( 0 ) )
{
m_alphas . coeffRef ( i ) = m_matS . coeff ( i , i ) ;
m_betas . coeffRef ( i ) = m_realQZ . matrixT ( ) . coeff ( i , i ) ;
+ + i ;
}
else
{
2016-06-08 22:39:11 +08:00
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
// From the eigen decomposition of T = U * E * U^-1,
// we can extract the eigenvalues of (U^-1 * S * U) / E
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
// T = [a b ; 0 c]
// S = [e f ; g h]
RealScalar a = m_realQZ . matrixT ( ) . coeff ( i , i ) , b = m_realQZ . matrixT ( ) . coeff ( i , i + 1 ) , c = m_realQZ . matrixT ( ) . coeff ( i + 1 , i + 1 ) ;
RealScalar e = m_matS . coeff ( i , i ) , f = m_matS . coeff ( i , i + 1 ) , g = m_matS . coeff ( i + 1 , i ) , h = m_matS . coeff ( i + 1 , i + 1 ) ;
RealScalar d = c - a ;
RealScalar gb = g * b ;
Matrix < RealScalar , 2 , 2 > A ;
A < < ( e * d - gb ) * c , ( ( e * b + f * d - h * b ) * d - gb * b ) * a ,
g * c , ( gb + h * d ) * a ;
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
Scalar p = Scalar ( 0.5 ) * ( A . coeff ( i , i ) - A . coeff ( i + 1 , i + 1 ) ) ;
Scalar z = sqrt ( abs ( p * p + A . coeff ( i + 1 , i ) * A . coeff ( i , i + 1 ) ) ) ;
m_alphas . coeffRef ( i ) = ComplexScalar ( A . coeff ( i + 1 , i + 1 ) + p , z ) ;
m_alphas . coeffRef ( i + 1 ) = ComplexScalar ( A . coeff ( i + 1 , i + 1 ) + p , - z ) ;
m_betas . coeffRef ( i ) =
m_betas . coeffRef ( i + 1 ) = a * c * d ;
2012-07-27 02:15:17 +08:00
i + = 2 ;
}
}
}
m_isInitialized = true ;
m_eigenvectorsOk = false ; //computeEigenvectors;
return * this ;
}
} // end namespace Eigen
# endif // EIGEN_GENERALIZEDEIGENSOLVER_H