mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
113 lines
4.5 KiB
C++
113 lines
4.5 KiB
C++
|
#include "main.h"
|
||
|
|
||
|
#include <Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::Tensor;
|
||
|
|
||
|
static void test_single_voxel_patch()
|
||
|
{
|
||
|
Tensor<float, 5> tensor(4,2,3,5,7);
|
||
|
tensor.setRandom();
|
||
|
Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout();
|
||
|
|
||
|
Tensor<float, 6> single_voxel_patch;
|
||
|
single_voxel_patch = tensor.extract_volume_patches(1, 1, 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(0), 4);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(1), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(3), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(4), 2 * 3 * 5);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch.dimension(5), 7);
|
||
|
|
||
|
Tensor<float, 6, RowMajor> single_voxel_patch_row_major;
|
||
|
single_voxel_patch_row_major = tensor_row_major.extract_volume_patches(1, 1, 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(0), 7);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(1), 2 * 3 * 5);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(3), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(4), 1);
|
||
|
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(5), 4);
|
||
|
|
||
|
for (int i = 0; i < tensor.size(); ++i) {
|
||
|
VERIFY_IS_EQUAL(tensor.data()[i], single_voxel_patch.data()[i]);
|
||
|
VERIFY_IS_EQUAL(tensor_row_major.data()[i], single_voxel_patch_row_major.data()[i]);
|
||
|
VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void test_entire_volume_patch()
|
||
|
{
|
||
|
const int depth = 4;
|
||
|
const int patch_z = 2;
|
||
|
const int patch_y = 3;
|
||
|
const int patch_x = 5;
|
||
|
const int batch = 7;
|
||
|
|
||
|
Tensor<float, 5> tensor(depth, patch_z, patch_y, patch_x, batch);
|
||
|
tensor.setRandom();
|
||
|
Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout();
|
||
|
|
||
|
Tensor<float, 6> entire_volume_patch;
|
||
|
entire_volume_patch = tensor.extract_volume_patches(patch_z, patch_y, patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(0), depth);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(1), patch_z);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(2), patch_y);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(3), patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(4), patch_z * patch_y * patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch.dimension(5), batch);
|
||
|
|
||
|
Tensor<float, 6, RowMajor> entire_volume_patch_row_major;
|
||
|
entire_volume_patch_row_major = tensor_row_major.extract_volume_patches(patch_z, patch_y, patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(0), batch);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(1), patch_z * patch_y * patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(2), patch_x);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(3), patch_y);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(4), patch_z);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(5), depth);
|
||
|
|
||
|
const int dz = patch_z - 1;
|
||
|
const int dy = patch_y - 1;
|
||
|
const int dx = patch_x - 1;
|
||
|
|
||
|
const int forward_pad_z = dz - dz / 2;
|
||
|
const int forward_pad_y = dy - dy / 2;
|
||
|
const int forward_pad_x = dx - dx / 2;
|
||
|
|
||
|
for (int pz = 0; pz < patch_z; pz++) {
|
||
|
for (int py = 0; py < patch_y; py++) {
|
||
|
for (int px = 0; px < patch_x; px++) {
|
||
|
const int patchId = pz + patch_z * (py + px * patch_y);
|
||
|
for (int z = 0; z < patch_z; z++) {
|
||
|
for (int y = 0; y < patch_y; y++) {
|
||
|
for (int x = 0; x < patch_x; x++) {
|
||
|
for (int b = 0; b < batch; b++) {
|
||
|
for (int d = 0; d < depth; d++) {
|
||
|
float expected = 0.0f;
|
||
|
float expected_row_major = 0.0f;
|
||
|
const int eff_z = z - forward_pad_z + pz;
|
||
|
const int eff_y = y - forward_pad_y + py;
|
||
|
const int eff_x = x - forward_pad_x + px;
|
||
|
if (eff_z >= 0 && eff_y >= 0 && eff_x >= 0 &&
|
||
|
eff_z < patch_z && eff_y < patch_y && eff_x < patch_x) {
|
||
|
expected = tensor(d, eff_z, eff_y, eff_x, b);
|
||
|
expected_row_major = tensor_row_major(b, eff_x, eff_y, eff_z, d);
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch(d, z, y, x, patchId, b), expected);
|
||
|
VERIFY_IS_EQUAL(entire_volume_patch_row_major(b, patchId, x, y, z, d), expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_cxx11_tensor_volume_patch()
|
||
|
{
|
||
|
CALL_SUBTEST(test_single_voxel_patch());
|
||
|
CALL_SUBTEST(test_entire_volume_patch());
|
||
|
}
|