curl/lib/vtls/bearssl.c
Daniel Stenberg 472f1cbe7e
NPN: remove support for and use of
Next Protocol Negotiation is a TLS extension that was created and used
for agreeing to use the SPDY protocol (the precursor to HTTP/2) for
HTTPS. In the early days of HTTP/2, before the spec was finalized and
shipped, the protocol could be enabled using this extension with some
servers.

curl supports the NPN extension with some TLS backends since then, with
a command line option `--npn` and in libcurl with
`CURLOPT_SSL_ENABLE_NPN`.

HTTP/2 proper is made to use the ALPN (Application-Layer Protocol
Negotiation) extension and the NPN extension has no purposes
anymore. The HTTP/2 spec was published in May 2015.

Today, use of NPN in the wild should be extremely rare and most likely
totally extinct. Chrome removed NPN support in Chrome 51, shipped in
June 2016. Removed in Firefox 53, April 2017.

Closes #9307
2022-09-05 07:39:02 +02:00

1215 lines
38 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) 2019 - 2022, Michael Forney, <mforney@mforney.org>
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curl_setup.h"
#ifdef USE_BEARSSL
#include <bearssl.h>
#include "bearssl.h"
#include "urldata.h"
#include "sendf.h"
#include "inet_pton.h"
#include "vtls.h"
#include "connect.h"
#include "select.h"
#include "multiif.h"
#include "curl_printf.h"
#include "curl_memory.h"
#include "strcase.h"
struct x509_context {
const br_x509_class *vtable;
br_x509_minimal_context minimal;
br_x509_decoder_context decoder;
bool verifyhost;
bool verifypeer;
int cert_num;
};
struct ssl_backend_data {
br_ssl_client_context ctx;
struct x509_context x509;
unsigned char buf[BR_SSL_BUFSIZE_BIDI];
br_x509_trust_anchor *anchors;
size_t anchors_len;
const char *protocols[2];
/* SSL client context is active */
bool active;
/* size of pending write, yet to be flushed */
size_t pending_write;
};
struct cafile_parser {
CURLcode err;
bool in_cert;
br_x509_decoder_context xc;
/* array of trust anchors loaded from CAfile */
br_x509_trust_anchor *anchors;
size_t anchors_len;
/* buffer for DN data */
unsigned char dn[1024];
size_t dn_len;
};
#define CAFILE_SOURCE_PATH 1
#define CAFILE_SOURCE_BLOB 2
struct cafile_source {
const int type;
const char * const data;
const size_t len;
};
static void append_dn(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->err != CURLE_OK || !ca->in_cert)
return;
if(sizeof(ca->dn) - ca->dn_len < len) {
ca->err = CURLE_FAILED_INIT;
return;
}
memcpy(ca->dn + ca->dn_len, buf, len);
ca->dn_len += len;
}
static void x509_push(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->in_cert)
br_x509_decoder_push(&ca->xc, buf, len);
}
static CURLcode load_cafile(struct cafile_source *source,
br_x509_trust_anchor **anchors,
size_t *anchors_len)
{
struct cafile_parser ca;
br_pem_decoder_context pc;
br_x509_trust_anchor *ta;
size_t ta_size;
br_x509_trust_anchor *new_anchors;
size_t new_anchors_len;
br_x509_pkey *pkey;
FILE *fp = 0;
unsigned char buf[BUFSIZ];
const unsigned char *p;
const char *name;
size_t n, i, pushed;
DEBUGASSERT(source->type == CAFILE_SOURCE_PATH
|| source->type == CAFILE_SOURCE_BLOB);
if(source->type == CAFILE_SOURCE_PATH) {
fp = fopen(source->data, "rb");
if(!fp)
return CURLE_SSL_CACERT_BADFILE;
}
if(source->type == CAFILE_SOURCE_BLOB && source->len > (size_t)INT_MAX)
return CURLE_SSL_CACERT_BADFILE;
ca.err = CURLE_OK;
ca.in_cert = FALSE;
ca.anchors = NULL;
ca.anchors_len = 0;
br_pem_decoder_init(&pc);
br_pem_decoder_setdest(&pc, x509_push, &ca);
do {
if(source->type == CAFILE_SOURCE_PATH) {
n = fread(buf, 1, sizeof(buf), fp);
if(n == 0)
break;
p = buf;
}
else if(source->type == CAFILE_SOURCE_BLOB) {
n = source->len;
p = (unsigned char *) source->data;
}
while(n) {
pushed = br_pem_decoder_push(&pc, p, n);
if(ca.err)
goto fail;
p += pushed;
n -= pushed;
switch(br_pem_decoder_event(&pc)) {
case 0:
break;
case BR_PEM_BEGIN_OBJ:
name = br_pem_decoder_name(&pc);
if(strcmp(name, "CERTIFICATE") && strcmp(name, "X509 CERTIFICATE"))
break;
br_x509_decoder_init(&ca.xc, append_dn, &ca);
ca.in_cert = TRUE;
ca.dn_len = 0;
break;
case BR_PEM_END_OBJ:
if(!ca.in_cert)
break;
ca.in_cert = FALSE;
if(br_x509_decoder_last_error(&ca.xc)) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
/* add trust anchor */
if(ca.anchors_len == SIZE_MAX / sizeof(ca.anchors[0])) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
new_anchors_len = ca.anchors_len + 1;
new_anchors = realloc(ca.anchors,
new_anchors_len * sizeof(ca.anchors[0]));
if(!new_anchors) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
ca.anchors = new_anchors;
ca.anchors_len = new_anchors_len;
ta = &ca.anchors[ca.anchors_len - 1];
ta->dn.data = NULL;
ta->flags = 0;
if(br_x509_decoder_isCA(&ca.xc))
ta->flags |= BR_X509_TA_CA;
pkey = br_x509_decoder_get_pkey(&ca.xc);
if(!pkey) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
ta->pkey = *pkey;
/* calculate space needed for trust anchor data */
ta_size = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta_size += pkey->key.rsa.nlen + pkey->key.rsa.elen;
break;
case BR_KEYTYPE_EC:
ta_size += pkey->key.ec.qlen;
break;
default:
ca.err = CURLE_FAILED_INIT;
goto fail;
}
/* fill in trust anchor DN and public key data */
ta->dn.data = malloc(ta_size);
if(!ta->dn.data) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
memcpy(ta->dn.data, ca.dn, ca.dn_len);
ta->dn.len = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta->pkey.key.rsa.n = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.rsa.n, pkey->key.rsa.n, pkey->key.rsa.nlen);
ta->pkey.key.rsa.e = ta->pkey.key.rsa.n + ta->pkey.key.rsa.nlen;
memcpy(ta->pkey.key.rsa.e, pkey->key.rsa.e, pkey->key.rsa.elen);
break;
case BR_KEYTYPE_EC:
ta->pkey.key.ec.q = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.ec.q, pkey->key.ec.q, pkey->key.ec.qlen);
break;
}
break;
default:
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
}
} while(source->type != CAFILE_SOURCE_BLOB);
if(fp && ferror(fp))
ca.err = CURLE_READ_ERROR;
else if(ca.in_cert)
ca.err = CURLE_SSL_CACERT_BADFILE;
fail:
if(fp)
fclose(fp);
if(ca.err == CURLE_OK) {
*anchors = ca.anchors;
*anchors_len = ca.anchors_len;
}
else {
for(i = 0; i < ca.anchors_len; ++i)
free(ca.anchors[i].dn.data);
free(ca.anchors);
}
return ca.err;
}
static void x509_start_chain(const br_x509_class **ctx,
const char *server_name)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num = 0;
return;
}
if(!x509->verifyhost)
server_name = NULL;
x509->minimal.vtable->start_chain(&x509->minimal.vtable, server_name);
}
static void x509_start_cert(const br_x509_class **ctx, uint32_t length)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Only decode the first cert in the chain to obtain the public key */
if(x509->cert_num == 0)
br_x509_decoder_init(&x509->decoder, NULL, NULL);
return;
}
x509->minimal.vtable->start_cert(&x509->minimal.vtable, length);
}
static void x509_append(const br_x509_class **ctx, const unsigned char *buf,
size_t len)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
if(x509->cert_num == 0)
br_x509_decoder_push(&x509->decoder, buf, len);
return;
}
x509->minimal.vtable->append(&x509->minimal.vtable, buf, len);
}
static void x509_end_cert(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num++;
return;
}
x509->minimal.vtable->end_cert(&x509->minimal.vtable);
}
static unsigned x509_end_chain(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
return br_x509_decoder_last_error(&x509->decoder);
}
return x509->minimal.vtable->end_chain(&x509->minimal.vtable);
}
static const br_x509_pkey *x509_get_pkey(const br_x509_class *const *ctx,
unsigned *usages)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Nothing in the chain is verified, just return the public key of the
first certificate and allow its usage for both TLS_RSA_* and
TLS_ECDHE_* */
if(usages)
*usages = BR_KEYTYPE_KEYX | BR_KEYTYPE_SIGN;
return br_x509_decoder_get_pkey(&x509->decoder);
}
return x509->minimal.vtable->get_pkey(&x509->minimal.vtable, usages);
}
static const br_x509_class x509_vtable = {
sizeof(struct x509_context),
x509_start_chain,
x509_start_cert,
x509_append,
x509_end_cert,
x509_end_chain,
x509_get_pkey
};
struct st_cipher {
const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */
const char *alias_name; /* Alias name is the same as OpenSSL cipher name */
uint16_t num; /* BearSSL cipher suite */
};
/* Macro to initialize st_cipher data structure */
#define CIPHER_DEF(num, alias) { #num, alias, BR_##num }
static const struct st_cipher ciphertable[] = {
/* RFC 2246 TLS 1.0 */
CIPHER_DEF(TLS_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */
"DES-CBC3-SHA"),
/* RFC 3268 TLS 1.0 AES */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */
"AES128-SHA"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */
"AES256-SHA"),
/* RFC 5246 TLS 1.2 */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */
"AES128-SHA256"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */
"AES256-SHA256"),
/* RFC 5288 TLS 1.2 AES GCM */
CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */
"AES128-GCM-SHA256"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */
"AES256-GCM-SHA384"),
/* RFC 4492 TLS 1.0 ECC */
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */
"ECDH-ECDSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */
"ECDH-ECDSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */
"ECDH-ECDSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */
"ECDHE-ECDSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */
"ECDHE-ECDSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */
"ECDHE-ECDSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */
"ECDH-RSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */
"ECDH-RSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */
"ECDH-RSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */
"ECDHE-RSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */
"ECDHE-RSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */
"ECDHE-RSA-AES256-SHA"),
/* RFC 5289 TLS 1.2 ECC HMAC SHA256/384 */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */
"ECDHE-ECDSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */
"ECDHE-ECDSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */
"ECDH-ECDSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */
"ECDH-ECDSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */
"ECDHE-RSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */
"ECDHE-RSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */
"ECDH-RSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */
"ECDH-RSA-AES256-SHA384"),
/* RFC 5289 TLS 1.2 GCM */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */
"ECDHE-ECDSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */
"ECDHE-ECDSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */
"ECDH-ECDSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */
"ECDH-ECDSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */
"ECDHE-RSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */
"ECDHE-RSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */
"ECDH-RSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */
"ECDH-RSA-AES256-GCM-SHA384"),
#ifdef BR_TLS_RSA_WITH_AES_128_CCM
/* RFC 6655 TLS 1.2 CCM
Supported since BearSSL 0.6 */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM, /* 0xC09C */
"AES128-CCM"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM, /* 0xC09D */
"AES256-CCM"),
CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM_8, /* 0xC0A0 */
"AES128-CCM8"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM_8, /* 0xC0A1 */
"AES256-CCM8"),
/* RFC 7251 TLS 1.2 ECC CCM
Supported since BearSSL 0.6 */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM, /* 0xC0AC */
"ECDHE-ECDSA-AES128-CCM"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM, /* 0xC0AD */
"ECDHE-ECDSA-AES256-CCM"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, /* 0xC0AE */
"ECDHE-ECDSA-AES128-CCM8"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, /* 0xC0AF */
"ECDHE-ECDSA-AES256-CCM8"),
#endif
/* RFC 7905 TLS 1.2 ChaCha20-Poly1305
Supported since BearSSL 0.2 */
CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */
"ECDHE-RSA-CHACHA20-POLY1305"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */
"ECDHE-ECDSA-CHACHA20-POLY1305"),
};
#define NUM_OF_CIPHERS (sizeof(ciphertable) / sizeof(ciphertable[0]))
#define CIPHER_NAME_BUF_LEN 64
static bool is_separator(char c)
{
/* Return whether character is a cipher list separator. */
switch(c) {
case ' ':
case '\t':
case ':':
case ',':
case ';':
return true;
}
return false;
}
static CURLcode bearssl_set_selected_ciphers(struct Curl_easy *data,
br_ssl_engine_context *ssl_eng,
const char *ciphers)
{
uint16_t selected_ciphers[NUM_OF_CIPHERS];
size_t selected_count = 0;
char cipher_name[CIPHER_NAME_BUF_LEN];
const char *cipher_start = ciphers;
const char *cipher_end;
size_t i, j;
if(!cipher_start)
return CURLE_SSL_CIPHER;
while(true) {
/* Extract the next cipher name from the ciphers string */
while(is_separator(*cipher_start))
++cipher_start;
if(*cipher_start == '\0')
break;
cipher_end = cipher_start;
while(*cipher_end != '\0' && !is_separator(*cipher_end))
++cipher_end;
j = cipher_end - cipher_start < CIPHER_NAME_BUF_LEN - 1 ?
cipher_end - cipher_start : CIPHER_NAME_BUF_LEN - 1;
strncpy(cipher_name, cipher_start, j);
cipher_name[j] = '\0';
cipher_start = cipher_end;
/* Lookup the cipher name in the table of available ciphers. If the cipher
name starts with "TLS_" we do the lookup by IANA name. Otherwise, we try
to match cipher name by an (OpenSSL) alias. */
if(strncasecompare(cipher_name, "TLS_", 4)) {
for(i = 0; i < NUM_OF_CIPHERS &&
!strcasecompare(cipher_name, ciphertable[i].name); ++i);
}
else {
for(i = 0; i < NUM_OF_CIPHERS &&
!strcasecompare(cipher_name, ciphertable[i].alias_name); ++i);
}
if(i == NUM_OF_CIPHERS) {
infof(data, "BearSSL: unknown cipher in list: %s", cipher_name);
continue;
}
/* No duplicates allowed */
for(j = 0; j < selected_count &&
selected_ciphers[j] != ciphertable[i].num; j++);
if(j < selected_count) {
infof(data, "BearSSL: duplicate cipher in list: %s", cipher_name);
continue;
}
DEBUGASSERT(selected_count < NUM_OF_CIPHERS);
selected_ciphers[selected_count] = ciphertable[i].num;
++selected_count;
}
if(selected_count == 0) {
failf(data, "BearSSL: no supported cipher in list");
return CURLE_SSL_CIPHER;
}
br_ssl_engine_set_suites(ssl_eng, selected_ciphers, selected_count);
return CURLE_OK;
}
static CURLcode bearssl_connect_step1(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
const struct curl_blob *ca_info_blob = SSL_CONN_CONFIG(ca_info_blob);
const char * const ssl_cafile =
/* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */
(ca_info_blob ? NULL : SSL_CONN_CONFIG(CAfile));
const char *hostname = SSL_HOST_NAME();
const bool verifypeer = SSL_CONN_CONFIG(verifypeer);
const bool verifyhost = SSL_CONN_CONFIG(verifyhost);
CURLcode ret;
unsigned version_min, version_max;
#ifdef ENABLE_IPV6
struct in6_addr addr;
#else
struct in_addr addr;
#endif
DEBUGASSERT(backend);
switch(SSL_CONN_CONFIG(version)) {
case CURL_SSLVERSION_SSLv2:
failf(data, "BearSSL does not support SSLv2");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_SSLv3:
failf(data, "BearSSL does not support SSLv3");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_0:
version_min = BR_TLS10;
version_max = BR_TLS10;
break;
case CURL_SSLVERSION_TLSv1_1:
version_min = BR_TLS11;
version_max = BR_TLS11;
break;
case CURL_SSLVERSION_TLSv1_2:
version_min = BR_TLS12;
version_max = BR_TLS12;
break;
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
version_min = BR_TLS10;
version_max = BR_TLS12;
break;
default:
failf(data, "BearSSL: unknown CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
if(ca_info_blob) {
struct cafile_source source = {
CAFILE_SOURCE_BLOB,
ca_info_blob->data,
ca_info_blob->len,
};
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
if(verifypeer) {
failf(data, "error importing CA certificate blob");
return ret;
}
/* Only warn if no certificate verification is required. */
infof(data, "error importing CA certificate blob, continuing anyway");
}
}
if(ssl_cafile) {
struct cafile_source source = {
CAFILE_SOURCE_PATH,
ssl_cafile,
0,
};
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
if(verifypeer) {
failf(data, "error setting certificate verify locations."
" CAfile: %s", ssl_cafile);
return ret;
}
infof(data, "error setting certificate verify locations,"
" continuing anyway:");
}
}
/* initialize SSL context */
br_ssl_client_init_full(&backend->ctx, &backend->x509.minimal,
backend->anchors, backend->anchors_len);
br_ssl_engine_set_versions(&backend->ctx.eng, version_min, version_max);
br_ssl_engine_set_buffer(&backend->ctx.eng, backend->buf,
sizeof(backend->buf), 1);
if(SSL_CONN_CONFIG(cipher_list)) {
/* Override the ciphers as specified. For the default cipher list see the
BearSSL source code of br_ssl_client_init_full() */
ret = bearssl_set_selected_ciphers(data, &backend->ctx.eng,
SSL_CONN_CONFIG(cipher_list));
if(ret)
return ret;
}
/* initialize X.509 context */
backend->x509.vtable = &x509_vtable;
backend->x509.verifypeer = verifypeer;
backend->x509.verifyhost = verifyhost;
br_ssl_engine_set_x509(&backend->ctx.eng, &backend->x509.vtable);
if(SSL_SET_OPTION(primary.sessionid)) {
void *session;
Curl_ssl_sessionid_lock(data);
if(!Curl_ssl_getsessionid(data, conn, SSL_IS_PROXY() ? TRUE : FALSE,
&session, NULL, sockindex)) {
br_ssl_engine_set_session_parameters(&backend->ctx.eng, session);
infof(data, "BearSSL: re-using session ID");
}
Curl_ssl_sessionid_unlock(data);
}
if(conn->bits.tls_enable_alpn) {
int cur = 0;
/* NOTE: when adding more protocols here, increase the size of the
* protocols array in `struct ssl_backend_data`.
*/
#ifdef USE_HTTP2
if(data->state.httpwant >= CURL_HTTP_VERSION_2
#ifndef CURL_DISABLE_PROXY
&& (!SSL_IS_PROXY() || !conn->bits.tunnel_proxy)
#endif
) {
backend->protocols[cur++] = ALPN_H2;
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_H2);
}
#endif
backend->protocols[cur++] = ALPN_HTTP_1_1;
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_HTTP_1_1);
br_ssl_engine_set_protocol_names(&backend->ctx.eng,
backend->protocols, cur);
}
if((1 == Curl_inet_pton(AF_INET, hostname, &addr))
#ifdef ENABLE_IPV6
|| (1 == Curl_inet_pton(AF_INET6, hostname, &addr))
#endif
) {
if(verifyhost) {
failf(data, "BearSSL: "
"host verification of IP address is not supported");
return CURLE_PEER_FAILED_VERIFICATION;
}
hostname = NULL;
}
else {
char *snihost = Curl_ssl_snihost(data, hostname, NULL);
if(!snihost) {
failf(data, "Failed to set SNI");
return CURLE_SSL_CONNECT_ERROR;
}
hostname = snihost;
}
/* give application a chance to interfere with SSL set up. */
if(data->set.ssl.fsslctx) {
Curl_set_in_callback(data, true);
ret = (*data->set.ssl.fsslctx)(data, &backend->ctx,
data->set.ssl.fsslctxp);
Curl_set_in_callback(data, false);
if(ret) {
failf(data, "BearSSL: error signaled by ssl ctx callback");
return ret;
}
}
if(!br_ssl_client_reset(&backend->ctx, hostname, 1))
return CURLE_FAILED_INIT;
backend->active = TRUE;
connssl->connecting_state = ssl_connect_2;
return CURLE_OK;
}
static CURLcode bearssl_run_until(struct Curl_easy *data,
struct connectdata *conn, int sockindex,
unsigned target)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
curl_socket_t sockfd = conn->sock[sockindex];
unsigned state;
unsigned char *buf;
size_t len;
ssize_t ret;
int err;
DEBUGASSERT(backend);
for(;;) {
state = br_ssl_engine_current_state(&backend->ctx.eng);
if(state & BR_SSL_CLOSED) {
err = br_ssl_engine_last_error(&backend->ctx.eng);
switch(err) {
case BR_ERR_OK:
/* TLS close notify */
if(connssl->state != ssl_connection_complete) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
return CURLE_OK;
case BR_ERR_X509_EXPIRED:
failf(data, "SSL: X.509 verification: "
"certificate is expired or not yet valid");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_BAD_SERVER_NAME:
failf(data, "SSL: X.509 verification: "
"expected server name was not found in the chain");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_NOT_TRUSTED:
failf(data, "SSL: X.509 verification: "
"chain could not be linked to a trust anchor");
return CURLE_PEER_FAILED_VERIFICATION;
}
/* X.509 errors are documented to have the range 32..63 */
if(err >= 32 && err < 64)
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_SSL_CONNECT_ERROR;
}
if(state & target)
return CURLE_OK;
if(state & BR_SSL_SENDREC) {
buf = br_ssl_engine_sendrec_buf(&backend->ctx.eng, &len);
ret = swrite(sockfd, buf, len);
if(ret == -1) {
if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) {
if(connssl->state != ssl_connection_complete)
connssl->connecting_state = ssl_connect_2_writing;
return CURLE_AGAIN;
}
return CURLE_WRITE_ERROR;
}
br_ssl_engine_sendrec_ack(&backend->ctx.eng, ret);
}
else if(state & BR_SSL_RECVREC) {
buf = br_ssl_engine_recvrec_buf(&backend->ctx.eng, &len);
ret = sread(sockfd, buf, len);
if(ret == 0) {
failf(data, "SSL: EOF without close notify");
return CURLE_READ_ERROR;
}
if(ret == -1) {
if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) {
if(connssl->state != ssl_connection_complete)
connssl->connecting_state = ssl_connect_2_reading;
return CURLE_AGAIN;
}
return CURLE_READ_ERROR;
}
br_ssl_engine_recvrec_ack(&backend->ctx.eng, ret);
}
}
}
static CURLcode bearssl_connect_step2(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
CURLcode ret;
DEBUGASSERT(backend);
ret = bearssl_run_until(data, conn, sockindex,
BR_SSL_SENDAPP | BR_SSL_RECVAPP);
if(ret == CURLE_AGAIN)
return CURLE_OK;
if(ret == CURLE_OK) {
if(br_ssl_engine_current_state(&backend->ctx.eng) == BR_SSL_CLOSED) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
connssl->connecting_state = ssl_connect_3;
}
return ret;
}
static CURLcode bearssl_connect_step3(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
CURLcode ret;
DEBUGASSERT(ssl_connect_3 == connssl->connecting_state);
DEBUGASSERT(backend);
if(conn->bits.tls_enable_alpn) {
const char *protocol;
protocol = br_ssl_engine_get_selected_protocol(&backend->ctx.eng);
if(protocol) {
infof(data, VTLS_INFOF_ALPN_ACCEPTED_1STR, protocol);
#ifdef USE_HTTP2
if(!strcmp(protocol, ALPN_H2))
conn->alpn = CURL_HTTP_VERSION_2;
else
#endif
if(!strcmp(protocol, ALPN_HTTP_1_1))
conn->alpn = CURL_HTTP_VERSION_1_1;
else
infof(data, "ALPN, unrecognized protocol %s", protocol);
Curl_multiuse_state(data, conn->alpn == CURL_HTTP_VERSION_2 ?
BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE);
}
else
infof(data, VTLS_INFOF_NO_ALPN);
}
if(SSL_SET_OPTION(primary.sessionid)) {
bool incache;
bool added = FALSE;
void *oldsession;
br_ssl_session_parameters *session;
session = malloc(sizeof(*session));
if(!session)
return CURLE_OUT_OF_MEMORY;
br_ssl_engine_get_session_parameters(&backend->ctx.eng, session);
Curl_ssl_sessionid_lock(data);
incache = !(Curl_ssl_getsessionid(data, conn,
SSL_IS_PROXY() ? TRUE : FALSE,
&oldsession, NULL, sockindex));
if(incache)
Curl_ssl_delsessionid(data, oldsession);
ret = Curl_ssl_addsessionid(data, conn,
SSL_IS_PROXY() ? TRUE : FALSE,
session, 0, sockindex, &added);
Curl_ssl_sessionid_unlock(data);
if(!added)
free(session);
if(ret) {
return CURLE_OUT_OF_MEMORY;
}
}
connssl->connecting_state = ssl_connect_done;
return CURLE_OK;
}
static ssize_t bearssl_send(struct Curl_easy *data, int sockindex,
const void *buf, size_t len, CURLcode *err)
{
struct connectdata *conn = data->conn;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
for(;;) {
*err = bearssl_run_until(data, conn, sockindex, BR_SSL_SENDAPP);
if (*err != CURLE_OK)
return -1;
app = br_ssl_engine_sendapp_buf(&backend->ctx.eng, &applen);
if(!app) {
failf(data, "SSL: connection closed during write");
*err = CURLE_SEND_ERROR;
return -1;
}
if(backend->pending_write) {
applen = backend->pending_write;
backend->pending_write = 0;
return applen;
}
if(applen > len)
applen = len;
memcpy(app, buf, applen);
br_ssl_engine_sendapp_ack(&backend->ctx.eng, applen);
br_ssl_engine_flush(&backend->ctx.eng, 0);
backend->pending_write = applen;
}
}
static ssize_t bearssl_recv(struct Curl_easy *data, int sockindex,
char *buf, size_t len, CURLcode *err)
{
struct connectdata *conn = data->conn;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
*err = bearssl_run_until(data, conn, sockindex, BR_SSL_RECVAPP);
if(*err != CURLE_OK)
return -1;
app = br_ssl_engine_recvapp_buf(&backend->ctx.eng, &applen);
if(!app)
return 0;
if(applen > len)
applen = len;
memcpy(buf, app, applen);
br_ssl_engine_recvapp_ack(&backend->ctx.eng, applen);
return applen;
}
static CURLcode bearssl_connect_common(struct Curl_easy *data,
struct connectdata *conn,
int sockindex,
bool nonblocking,
bool *done)
{
CURLcode ret;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
curl_socket_t sockfd = conn->sock[sockindex];
timediff_t timeout_ms;
int what;
/* check if the connection has already been established */
if(ssl_connection_complete == connssl->state) {
*done = TRUE;
return CURLE_OK;
}
if(ssl_connect_1 == connssl->connecting_state) {
ret = bearssl_connect_step1(data, conn, sockindex);
if(ret)
return ret;
}
while(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
/* check allowed time left */
timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
/* if ssl is expecting something, check if it's available. */
if(ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
curl_socket_t writefd = ssl_connect_2_writing ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
curl_socket_t readfd = ssl_connect_2_reading ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd,
nonblocking?0:timeout_ms);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
return CURLE_SSL_CONNECT_ERROR;
}
else if(0 == what) {
if(nonblocking) {
*done = FALSE;
return CURLE_OK;
}
else {
/* timeout */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
}
/* socket is readable or writable */
}
/* Run transaction, and return to the caller if it failed or if this
* connection is done nonblocking and this loop would execute again. This
* permits the owner of a multi handle to abort a connection attempt
* before step2 has completed while ensuring that a client using select()
* or epoll() will always have a valid fdset to wait on.
*/
ret = bearssl_connect_step2(data, conn, sockindex);
if(ret || (nonblocking &&
(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state)))
return ret;
}
if(ssl_connect_3 == connssl->connecting_state) {
ret = bearssl_connect_step3(data, conn, sockindex);
if(ret)
return ret;
}
if(ssl_connect_done == connssl->connecting_state) {
connssl->state = ssl_connection_complete;
conn->recv[sockindex] = bearssl_recv;
conn->send[sockindex] = bearssl_send;
*done = TRUE;
}
else
*done = FALSE;
/* Reset our connect state machine */
connssl->connecting_state = ssl_connect_1;
return CURLE_OK;
}
static size_t bearssl_version(char *buffer, size_t size)
{
return msnprintf(buffer, size, "BearSSL");
}
static bool bearssl_data_pending(const struct connectdata *conn,
int connindex)
{
const struct ssl_connect_data *connssl = &conn->ssl[connindex];
struct ssl_backend_data *backend = connssl->backend;
DEBUGASSERT(backend);
return br_ssl_engine_current_state(&backend->ctx.eng) & BR_SSL_RECVAPP;
}
static CURLcode bearssl_random(struct Curl_easy *data UNUSED_PARAM,
unsigned char *entropy, size_t length)
{
static br_hmac_drbg_context ctx;
static bool seeded = FALSE;
if(!seeded) {
br_prng_seeder seeder;
br_hmac_drbg_init(&ctx, &br_sha256_vtable, NULL, 0);
seeder = br_prng_seeder_system(NULL);
if(!seeder || !seeder(&ctx.vtable))
return CURLE_FAILED_INIT;
seeded = TRUE;
}
br_hmac_drbg_generate(&ctx, entropy, length);
return CURLE_OK;
}
static CURLcode bearssl_connect(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
CURLcode ret;
bool done = FALSE;
ret = bearssl_connect_common(data, conn, sockindex, FALSE, &done);
if(ret)
return ret;
DEBUGASSERT(done);
return CURLE_OK;
}
static CURLcode bearssl_connect_nonblocking(struct Curl_easy *data,
struct connectdata *conn,
int sockindex, bool *done)
{
return bearssl_connect_common(data, conn, sockindex, TRUE, done);
}
static void *bearssl_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
struct ssl_backend_data *backend = connssl->backend;
DEBUGASSERT(backend);
return &backend->ctx;
}
static void bearssl_close(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
size_t i;
DEBUGASSERT(backend);
if(backend->active) {
br_ssl_engine_close(&backend->ctx.eng);
(void)bearssl_run_until(data, conn, sockindex, BR_SSL_CLOSED);
}
for(i = 0; i < backend->anchors_len; ++i)
free(backend->anchors[i].dn.data);
free(backend->anchors);
}
static void bearssl_session_free(void *ptr)
{
free(ptr);
}
static CURLcode bearssl_sha256sum(const unsigned char *input,
size_t inputlen,
unsigned char *sha256sum,
size_t sha256len UNUSED_PARAM)
{
br_sha256_context ctx;
br_sha256_init(&ctx);
br_sha256_update(&ctx, input, inputlen);
br_sha256_out(&ctx, sha256sum);
return CURLE_OK;
}
const struct Curl_ssl Curl_ssl_bearssl = {
{ CURLSSLBACKEND_BEARSSL, "bearssl" }, /* info */
SSLSUPP_CAINFO_BLOB | SSLSUPP_SSL_CTX,
sizeof(struct ssl_backend_data),
Curl_none_init, /* init */
Curl_none_cleanup, /* cleanup */
bearssl_version, /* version */
Curl_none_check_cxn, /* check_cxn */
Curl_none_shutdown, /* shutdown */
bearssl_data_pending, /* data_pending */
bearssl_random, /* random */
Curl_none_cert_status_request, /* cert_status_request */
bearssl_connect, /* connect */
bearssl_connect_nonblocking, /* connect_nonblocking */
Curl_ssl_getsock, /* getsock */
bearssl_get_internals, /* get_internals */
bearssl_close, /* close_one */
Curl_none_close_all, /* close_all */
bearssl_session_free, /* session_free */
Curl_none_set_engine, /* set_engine */
Curl_none_set_engine_default, /* set_engine_default */
Curl_none_engines_list, /* engines_list */
Curl_none_false_start, /* false_start */
bearssl_sha256sum, /* sha256sum */
NULL, /* associate_connection */
NULL /* disassociate_connection */
};
#endif /* USE_BEARSSL */