curl/lib/vquic/curl_ngtcp2.c
Stefan Eissing bc6e3e6049
h3/ngtcp2: improve error handling
- identify ngtcp2 and nghttp3 error codes that are fatal
- close quic connection on fatal errors
- refuse further filter operations once connection is closed
- confusion about the nghttp3 API. We should close the QUIC stream on
  cancel and not use the nghttp3 calls intended to be invoked when the
  QUIC stream was closed by the peer.

Closes #13562
2024-05-10 09:29:19 +02:00

2510 lines
76 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curl_setup.h"
#if defined(USE_NGTCP2) && defined(USE_NGHTTP3)
#include <ngtcp2/ngtcp2.h>
#include <nghttp3/nghttp3.h>
#ifdef USE_OPENSSL
#include <openssl/err.h>
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
#include <ngtcp2/ngtcp2_crypto_boringssl.h>
#else
#include <ngtcp2/ngtcp2_crypto_quictls.h>
#endif
#include "vtls/openssl.h"
#elif defined(USE_GNUTLS)
#include <ngtcp2/ngtcp2_crypto_gnutls.h>
#include "vtls/gtls.h"
#elif defined(USE_WOLFSSL)
#include <ngtcp2/ngtcp2_crypto_wolfssl.h>
#endif
#include "urldata.h"
#include "hash.h"
#include "sendf.h"
#include "strdup.h"
#include "rand.h"
#include "multiif.h"
#include "strcase.h"
#include "cfilters.h"
#include "cf-socket.h"
#include "connect.h"
#include "progress.h"
#include "strerror.h"
#include "dynbuf.h"
#include "http1.h"
#include "select.h"
#include "inet_pton.h"
#include "transfer.h"
#include "vquic.h"
#include "vquic_int.h"
#include "vquic-tls.h"
#include "vtls/keylog.h"
#include "vtls/vtls.h"
#include "curl_ngtcp2.h"
#include "warnless.h"
/* The last 3 #include files should be in this order */
#include "curl_printf.h"
#include "curl_memory.h"
#include "memdebug.h"
#define QUIC_MAX_STREAMS (256*1024)
#define QUIC_MAX_DATA (1*1024*1024)
#define QUIC_HANDSHAKE_TIMEOUT (10*NGTCP2_SECONDS)
/* A stream window is the maximum amount we need to buffer for
* each active transfer. We use HTTP/3 flow control and only ACK
* when we take things out of the buffer.
* Chunk size is large enough to take a full DATA frame */
#define H3_STREAM_WINDOW_SIZE (128 * 1024)
#define H3_STREAM_CHUNK_SIZE (16 * 1024)
/* The pool keeps spares around and half of a full stream windows
* seems good. More does not seem to improve performance.
* The benefit of the pool is that stream buffer to not keep
* spares. So memory consumption goes down when streams run empty,
* have a large upload done, etc. */
#define H3_STREAM_POOL_SPARES \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2
/* Receive and Send max number of chunks just follows from the
* chunk size and window size */
#define H3_STREAM_RECV_CHUNKS \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
#define H3_STREAM_SEND_CHUNKS \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
/*
* Store ngtcp2 version info in this buffer.
*/
void Curl_ngtcp2_ver(char *p, size_t len)
{
const ngtcp2_info *ng2 = ngtcp2_version(0);
const nghttp3_info *ht3 = nghttp3_version(0);
(void)msnprintf(p, len, "ngtcp2/%s nghttp3/%s",
ng2->version_str, ht3->version_str);
}
struct cf_ngtcp2_ctx {
struct cf_quic_ctx q;
struct ssl_peer peer;
struct curl_tls_ctx tls;
ngtcp2_path connected_path;
ngtcp2_conn *qconn;
ngtcp2_cid dcid;
ngtcp2_cid scid;
uint32_t version;
ngtcp2_settings settings;
ngtcp2_transport_params transport_params;
ngtcp2_ccerr last_error;
ngtcp2_crypto_conn_ref conn_ref;
struct cf_call_data call_data;
nghttp3_conn *h3conn;
nghttp3_settings h3settings;
struct curltime started_at; /* time the current attempt started */
struct curltime handshake_at; /* time connect handshake finished */
struct curltime reconnect_at; /* time the next attempt should start */
struct bufc_pool stream_bufcp; /* chunk pool for streams */
struct dynbuf scratch; /* temp buffer for header construction */
struct Curl_hash streams; /* hash `data->id` to `h3_stream_ctx` */
size_t max_stream_window; /* max flow window for one stream */
uint64_t max_idle_ms; /* max idle time for QUIC connection */
uint64_t used_bidi_streams; /* bidi streams we have opened */
uint64_t max_bidi_streams; /* max bidi streams we can open */
int qlogfd;
BIT(conn_closed); /* connection is closed */
};
/* How to access `call_data` from a cf_ngtcp2 filter */
#undef CF_CTX_CALL_DATA
#define CF_CTX_CALL_DATA(cf) \
((struct cf_ngtcp2_ctx *)(cf)->ctx)->call_data
struct pkt_io_ctx;
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx);
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx);
/**
* All about the H3 internals of a stream
*/
struct h3_stream_ctx {
curl_int64_t id; /* HTTP/3 protocol identifier */
struct bufq sendbuf; /* h3 request body */
struct h1_req_parser h1; /* h1 request parsing */
size_t sendbuf_len_in_flight; /* sendbuf amount "in flight" */
size_t upload_blocked_len; /* the amount written last and EGAINed */
curl_uint64_t error3; /* HTTP/3 stream error code */
curl_off_t upload_left; /* number of request bytes left to upload */
int status_code; /* HTTP status code */
CURLcode xfer_result; /* result from xfer_resp_write(_hd) */
bool resp_hds_complete; /* we have a complete, final response */
bool closed; /* TRUE on stream close */
bool reset; /* TRUE on stream reset */
bool send_closed; /* stream is local closed */
BIT(quic_flow_blocked); /* stream is blocked by QUIC flow control */
};
#define H3_STREAM_CTX(ctx,data) ((struct h3_stream_ctx *)(\
data? Curl_hash_offt_get(&(ctx)->streams, (data)->id) : NULL))
#define H3_STREAM_CTX_ID(ctx,id) ((struct h3_stream_ctx *)(\
Curl_hash_offt_get(&(ctx)->streams, (id))))
static void h3_stream_ctx_free(struct h3_stream_ctx *stream)
{
Curl_bufq_free(&stream->sendbuf);
Curl_h1_req_parse_free(&stream->h1);
free(stream);
}
static void h3_stream_hash_free(void *stream)
{
DEBUGASSERT(stream);
h3_stream_ctx_free((struct h3_stream_ctx *)stream);
}
static CURLcode h3_data_setup(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
if(!data || !data->req.p.http) {
failf(data, "initialization failure, transfer not http initialized");
return CURLE_FAILED_INIT;
}
if(stream)
return CURLE_OK;
stream = calloc(1, sizeof(*stream));
if(!stream)
return CURLE_OUT_OF_MEMORY;
stream->id = -1;
/* on send, we control how much we put into the buffer */
Curl_bufq_initp(&stream->sendbuf, &ctx->stream_bufcp,
H3_STREAM_SEND_CHUNKS, BUFQ_OPT_NONE);
stream->sendbuf_len_in_flight = 0;
Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN);
if(!Curl_hash_offt_set(&ctx->streams, data->id, stream)) {
h3_stream_ctx_free(stream);
return CURLE_OUT_OF_MEMORY;
}
return CURLE_OK;
}
static void cf_ngtcp2_stream_close(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct h3_stream_ctx *stream)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
DEBUGASSERT(data);
DEBUGASSERT(stream);
if(!stream->closed && ctx->qconn && ctx->h3conn) {
CURLcode result;
nghttp3_conn_set_stream_user_data(ctx->h3conn, stream->id, NULL);
ngtcp2_conn_set_stream_user_data(ctx->qconn, stream->id, NULL);
stream->closed = TRUE;
(void)ngtcp2_conn_shutdown_stream(ctx->qconn, 0, stream->id,
NGHTTP3_H3_REQUEST_CANCELLED);
result = cf_progress_egress(cf, data, NULL);
if(result)
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cancel stream -> %d",
stream->id, result);
}
}
static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
(void)cf;
if(stream) {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] easy handle is done",
stream->id);
cf_ngtcp2_stream_close(cf, data, stream);
Curl_hash_offt_remove(&ctx->streams, data->id);
}
}
static struct Curl_easy *get_stream_easy(struct Curl_cfilter *cf,
struct Curl_easy *data,
int64_t stream_id,
struct h3_stream_ctx **pstream)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *sdata;
struct h3_stream_ctx *stream;
(void)cf;
stream = H3_STREAM_CTX(ctx, data);
if(stream && stream->id == stream_id) {
*pstream = stream;
return data;
}
else {
DEBUGASSERT(data->multi);
for(sdata = data->multi->easyp; sdata; sdata = sdata->next) {
if(sdata->conn != data->conn)
continue;
stream = H3_STREAM_CTX(ctx, sdata);
if(stream && stream->id == stream_id) {
*pstream = stream;
return sdata;
}
}
}
*pstream = NULL;
return NULL;
}
static void h3_drain_stream(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
unsigned char bits;
(void)cf;
bits = CURL_CSELECT_IN;
if(stream && stream->upload_left && !stream->send_closed)
bits |= CURL_CSELECT_OUT;
if(data->state.select_bits != bits) {
data->state.select_bits = bits;
Curl_expire(data, 0, EXPIRE_RUN_NOW);
}
}
/* ngtcp2 default congestion controller does not perform pacing. Limit
the maximum packet burst to MAX_PKT_BURST packets. */
#define MAX_PKT_BURST 10
struct pkt_io_ctx {
struct Curl_cfilter *cf;
struct Curl_easy *data;
ngtcp2_tstamp ts;
size_t pkt_count;
ngtcp2_path_storage ps;
};
static void pktx_update_time(struct pkt_io_ctx *pktx,
struct Curl_cfilter *cf)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
vquic_ctx_update_time(&ctx->q);
pktx->ts = ctx->q.last_op.tv_sec * NGTCP2_SECONDS +
ctx->q.last_op.tv_usec * NGTCP2_MICROSECONDS;
}
static void pktx_init(struct pkt_io_ctx *pktx,
struct Curl_cfilter *cf,
struct Curl_easy *data)
{
pktx->cf = cf;
pktx->data = data;
pktx->pkt_count = 0;
ngtcp2_path_storage_zero(&pktx->ps);
pktx_update_time(pktx, cf);
}
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
uint64_t datalen, void *user_data,
void *stream_user_data);
static ngtcp2_conn *get_conn(ngtcp2_crypto_conn_ref *conn_ref)
{
struct Curl_cfilter *cf = conn_ref->user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
return ctx->qconn;
}
#ifdef DEBUG_NGTCP2
static void quic_printf(void *user_data, const char *fmt, ...)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)ctx; /* TODO: need an easy handle to infof() message */
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
}
#endif
static void qlog_callback(void *user_data, uint32_t flags,
const void *data, size_t datalen)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)flags;
if(ctx->qlogfd != -1) {
ssize_t rc = write(ctx->qlogfd, data, datalen);
if(rc == -1) {
/* on write error, stop further write attempts */
close(ctx->qlogfd);
ctx->qlogfd = -1;
}
}
}
static void quic_settings(struct cf_ngtcp2_ctx *ctx,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
ngtcp2_settings *s = &ctx->settings;
ngtcp2_transport_params *t = &ctx->transport_params;
ngtcp2_settings_default(s);
ngtcp2_transport_params_default(t);
#ifdef DEBUG_NGTCP2
s->log_printf = quic_printf;
#else
s->log_printf = NULL;
#endif
(void)data;
s->initial_ts = pktx->ts;
s->handshake_timeout = QUIC_HANDSHAKE_TIMEOUT;
s->max_window = 100 * ctx->max_stream_window;
s->max_stream_window = ctx->max_stream_window;
t->initial_max_data = 10 * ctx->max_stream_window;
t->initial_max_stream_data_bidi_local = ctx->max_stream_window;
t->initial_max_stream_data_bidi_remote = ctx->max_stream_window;
t->initial_max_stream_data_uni = ctx->max_stream_window;
t->initial_max_streams_bidi = QUIC_MAX_STREAMS;
t->initial_max_streams_uni = QUIC_MAX_STREAMS;
t->max_idle_timeout = (ctx->max_idle_ms * NGTCP2_MILLISECONDS);
if(ctx->qlogfd != -1) {
s->qlog_write = qlog_callback;
}
}
static int init_ngh3_conn(struct Curl_cfilter *cf);
static int cb_handshake_completed(ngtcp2_conn *tconn, void *user_data)
{
(void)user_data;
(void)tconn;
return 0;
}
static void cf_ngtcp2_conn_close(struct Curl_cfilter *cf,
struct Curl_easy *data);
static bool cf_ngtcp2_err_is_fatal(int code)
{
return (NGTCP2_ERR_FATAL >= code) ||
(NGTCP2_ERR_DROP_CONN == code) ||
(NGTCP2_ERR_IDLE_CLOSE == code);
}
static void cf_ngtcp2_err_set(struct Curl_cfilter *cf,
struct Curl_easy *data, int code)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
if(!ctx->last_error.error_code) {
if(NGTCP2_ERR_CRYPTO == code) {
ngtcp2_ccerr_set_tls_alert(&ctx->last_error,
ngtcp2_conn_get_tls_alert(ctx->qconn),
NULL, 0);
}
else {
ngtcp2_ccerr_set_liberr(&ctx->last_error, code, NULL, 0);
}
}
if(cf_ngtcp2_err_is_fatal(code))
cf_ngtcp2_conn_close(cf, data);
}
static bool cf_ngtcp2_h3_err_is_fatal(int code)
{
return (NGHTTP3_ERR_FATAL >= code) ||
(NGHTTP3_ERR_H3_CLOSED_CRITICAL_STREAM == code);
}
static void cf_ngtcp2_h3_err_set(struct Curl_cfilter *cf,
struct Curl_easy *data, int code)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
if(!ctx->last_error.error_code) {
ngtcp2_ccerr_set_application_error(&ctx->last_error,
nghttp3_err_infer_quic_app_error_code(code), NULL, 0);
}
if(cf_ngtcp2_h3_err_is_fatal(code))
cf_ngtcp2_conn_close(cf, data);
}
static int cb_recv_stream_data(ngtcp2_conn *tconn, uint32_t flags,
int64_t sid, uint64_t offset,
const uint8_t *buf, size_t buflen,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
curl_int64_t stream_id = (curl_int64_t)sid;
nghttp3_ssize nconsumed;
int fin = (flags & NGTCP2_STREAM_DATA_FLAG_FIN) ? 1 : 0;
struct Curl_easy *data = stream_user_data;
(void)offset;
(void)data;
nconsumed =
nghttp3_conn_read_stream(ctx->h3conn, stream_id, buf, buflen, fin);
if(!data)
data = CF_DATA_CURRENT(cf);
if(data)
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read_stream(len=%zu) -> %zd",
stream_id, buflen, nconsumed);
if(nconsumed < 0) {
struct h3_stream_ctx *stream = H3_STREAM_CTX_ID(ctx, stream_id);
if(data && stream) {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] error on known stream, "
"reset=%d, closed=%d",
stream_id, stream->reset, stream->closed);
}
return NGTCP2_ERR_CALLBACK_FAILURE;
}
/* number of bytes inside buflen which consists of framing overhead
* including QPACK HEADERS. In other words, it does not consume payload of
* DATA frame. */
ngtcp2_conn_extend_max_stream_offset(tconn, stream_id, nconsumed);
ngtcp2_conn_extend_max_offset(tconn, nconsumed);
return 0;
}
static int
cb_acked_stream_data_offset(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t offset, uint64_t datalen, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)stream_id;
(void)tconn;
(void)offset;
(void)datalen;
(void)stream_user_data;
rv = nghttp3_conn_add_ack_offset(ctx->h3conn, stream_id, datalen);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_close(ngtcp2_conn *tconn, uint32_t flags,
int64_t sid, uint64_t app_error_code,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
curl_int64_t stream_id = (curl_int64_t)sid;
int rv;
(void)tconn;
/* stream is closed... */
if(!data)
data = CF_DATA_CURRENT(cf);
if(!data)
return NGTCP2_ERR_CALLBACK_FAILURE;
if(!(flags & NGTCP2_STREAM_CLOSE_FLAG_APP_ERROR_CODE_SET)) {
app_error_code = NGHTTP3_H3_NO_ERROR;
}
rv = nghttp3_conn_close_stream(ctx->h3conn, stream_id, app_error_code);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] quic close(app_error=%"
CURL_PRIu64 ") -> %d", stream_id, (curl_uint64_t)app_error_code,
rv);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
cf_ngtcp2_h3_err_set(cf, data, rv);
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_reset(ngtcp2_conn *tconn, int64_t sid,
uint64_t final_size, uint64_t app_error_code,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
curl_int64_t stream_id = (curl_int64_t)sid;
struct Curl_easy *data = stream_user_data;
int rv;
(void)tconn;
(void)final_size;
(void)app_error_code;
(void)data;
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] reset -> %d", stream_id, rv);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_stop_sending(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)tconn;
(void)app_error_code;
(void)stream_user_data;
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_extend_max_local_streams_bidi(ngtcp2_conn *tconn,
uint64_t max_streams,
void *user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = CF_DATA_CURRENT(cf);
(void)tconn;
ctx->max_bidi_streams = max_streams;
if(data)
CURL_TRC_CF(data, cf, "max bidi streams now %" CURL_PRIu64
", used %" CURL_PRIu64, (curl_uint64_t)ctx->max_bidi_streams,
(curl_uint64_t)ctx->used_bidi_streams);
return 0;
}
static int cb_extend_max_stream_data(ngtcp2_conn *tconn, int64_t sid,
uint64_t max_data, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
curl_int64_t stream_id = (curl_int64_t)sid;
struct Curl_easy *data = CF_DATA_CURRENT(cf);
struct Curl_easy *s_data;
struct h3_stream_ctx *stream;
int rv;
(void)tconn;
(void)max_data;
(void)stream_user_data;
rv = nghttp3_conn_unblock_stream(ctx->h3conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
s_data = get_stream_easy(cf, data, stream_id, &stream);
if(s_data && stream && stream->quic_flow_blocked) {
CURL_TRC_CF(s_data, cf, "[%" CURL_PRId64 "] unblock quic flow",
stream_id);
stream->quic_flow_blocked = FALSE;
h3_drain_stream(cf, s_data);
}
return 0;
}
static void cb_rand(uint8_t *dest, size_t destlen,
const ngtcp2_rand_ctx *rand_ctx)
{
CURLcode result;
(void)rand_ctx;
result = Curl_rand(NULL, dest, destlen);
if(result) {
/* cb_rand is only used for non-cryptographic context. If Curl_rand
failed, just fill 0 and call it *random*. */
memset(dest, 0, destlen);
}
}
static int cb_get_new_connection_id(ngtcp2_conn *tconn, ngtcp2_cid *cid,
uint8_t *token, size_t cidlen,
void *user_data)
{
CURLcode result;
(void)tconn;
(void)user_data;
result = Curl_rand(NULL, cid->data, cidlen);
if(result)
return NGTCP2_ERR_CALLBACK_FAILURE;
cid->datalen = cidlen;
result = Curl_rand(NULL, token, NGTCP2_STATELESS_RESET_TOKENLEN);
if(result)
return NGTCP2_ERR_CALLBACK_FAILURE;
return 0;
}
static int cb_recv_rx_key(ngtcp2_conn *tconn, ngtcp2_encryption_level level,
void *user_data)
{
struct Curl_cfilter *cf = user_data;
(void)tconn;
if(level != NGTCP2_ENCRYPTION_LEVEL_1RTT) {
return 0;
}
if(init_ngh3_conn(cf) != CURLE_OK) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static ngtcp2_callbacks ng_callbacks = {
ngtcp2_crypto_client_initial_cb,
NULL, /* recv_client_initial */
ngtcp2_crypto_recv_crypto_data_cb,
cb_handshake_completed,
NULL, /* recv_version_negotiation */
ngtcp2_crypto_encrypt_cb,
ngtcp2_crypto_decrypt_cb,
ngtcp2_crypto_hp_mask_cb,
cb_recv_stream_data,
cb_acked_stream_data_offset,
NULL, /* stream_open */
cb_stream_close,
NULL, /* recv_stateless_reset */
ngtcp2_crypto_recv_retry_cb,
cb_extend_max_local_streams_bidi,
NULL, /* extend_max_local_streams_uni */
cb_rand,
cb_get_new_connection_id,
NULL, /* remove_connection_id */
ngtcp2_crypto_update_key_cb, /* update_key */
NULL, /* path_validation */
NULL, /* select_preferred_addr */
cb_stream_reset,
NULL, /* extend_max_remote_streams_bidi */
NULL, /* extend_max_remote_streams_uni */
cb_extend_max_stream_data,
NULL, /* dcid_status */
NULL, /* handshake_confirmed */
NULL, /* recv_new_token */
ngtcp2_crypto_delete_crypto_aead_ctx_cb,
ngtcp2_crypto_delete_crypto_cipher_ctx_cb,
NULL, /* recv_datagram */
NULL, /* ack_datagram */
NULL, /* lost_datagram */
ngtcp2_crypto_get_path_challenge_data_cb,
cb_stream_stop_sending,
NULL, /* version_negotiation */
cb_recv_rx_key,
NULL, /* recv_tx_key */
NULL, /* early_data_rejected */
};
/**
* Connection maintenance like timeouts on packet ACKs etc. are done by us, not
* the OS like for TCP. POLL events on the socket therefore are not
* sufficient.
* ngtcp2 tells us when it wants to be invoked again. We handle that via
* the `Curl_expire()` mechanisms.
*/
static CURLcode check_and_set_expiry(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct pkt_io_ctx local_pktx;
ngtcp2_tstamp expiry;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
}
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
if(expiry != UINT64_MAX) {
if(expiry <= pktx->ts) {
CURLcode result;
int rv = ngtcp2_conn_handle_expiry(ctx->qconn, pktx->ts);
if(rv) {
failf(data, "ngtcp2_conn_handle_expiry returned error: %s",
ngtcp2_strerror(rv));
cf_ngtcp2_err_set(cf, data, rv);
return CURLE_SEND_ERROR;
}
result = cf_progress_ingress(cf, data, pktx);
if(result)
return result;
result = cf_progress_egress(cf, data, pktx);
if(result)
return result;
/* ask again, things might have changed */
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
}
if(expiry > pktx->ts) {
ngtcp2_duration timeout = expiry - pktx->ts;
if(timeout % NGTCP2_MILLISECONDS) {
timeout += NGTCP2_MILLISECONDS;
}
Curl_expire(data, timeout / NGTCP2_MILLISECONDS, EXPIRE_QUIC);
}
}
return CURLE_OK;
}
static void cf_ngtcp2_adjust_pollset(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct easy_pollset *ps)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
bool want_recv, want_send;
if(!ctx->qconn)
return;
Curl_pollset_check(data, ps, ctx->q.sockfd, &want_recv, &want_send);
if(want_recv || want_send) {
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
struct cf_call_data save;
bool c_exhaust, s_exhaust;
CF_DATA_SAVE(save, cf, data);
c_exhaust = want_send && (!ngtcp2_conn_get_cwnd_left(ctx->qconn) ||
!ngtcp2_conn_get_max_data_left(ctx->qconn));
s_exhaust = want_send && stream && stream->id >= 0 &&
stream->quic_flow_blocked;
want_recv = (want_recv || c_exhaust || s_exhaust);
want_send = (!s_exhaust && want_send) ||
!Curl_bufq_is_empty(&ctx->q.sendbuf);
Curl_pollset_set(data, ps, ctx->q.sockfd, want_recv, want_send);
CF_DATA_RESTORE(cf, save);
}
}
static int cb_h3_stream_close(nghttp3_conn *conn, int64_t sid,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
curl_int64_t stream_id = (curl_int64_t)sid;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
(void)conn;
(void)stream_id;
/* we might be called by nghttp3 after we already cleaned up */
if(!stream)
return 0;
stream->closed = TRUE;
stream->error3 = (curl_uint64_t)app_error_code;
if(stream->error3 != NGHTTP3_H3_NO_ERROR) {
stream->reset = TRUE;
stream->send_closed = TRUE;
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] RESET: error %" CURL_PRIu64,
stream->id, stream->error3);
}
else {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] CLOSED", stream->id);
}
h3_drain_stream(cf, data);
return 0;
}
static void h3_xfer_write_resp_hd(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct h3_stream_ctx *stream,
const char *buf, size_t blen, bool eos)
{
/* If we already encountered an error, skip further writes */
if(!stream->xfer_result) {
stream->xfer_result = Curl_xfer_write_resp_hd(data, buf, blen, eos);
if(stream->xfer_result)
CURL_TRC_CF(data, cf, "[%"CURL_PRId64"] error %d writing %zu "
"bytes of headers", stream->id, stream->xfer_result, blen);
}
}
static void h3_xfer_write_resp(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct h3_stream_ctx *stream,
const char *buf, size_t blen, bool eos)
{
/* If we already encountered an error, skip further writes */
if(!stream->xfer_result) {
stream->xfer_result = Curl_xfer_write_resp(data, buf, blen, eos);
/* If the transfer write is errored, we do not want any more data */
if(stream->xfer_result) {
CURL_TRC_CF(data, cf, "[%"CURL_PRId64"] error %d writing %zu bytes "
"of data", stream->id, stream->xfer_result, blen);
}
}
}
static int cb_h3_recv_data(nghttp3_conn *conn, int64_t stream3_id,
const uint8_t *buf, size_t blen,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
(void)conn;
(void)stream3_id;
if(!stream)
return NGHTTP3_ERR_CALLBACK_FAILURE;
h3_xfer_write_resp(cf, data, stream, (char *)buf, blen, FALSE);
if(blen) {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] ACK %zu bytes of DATA",
stream->id, blen);
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream->id, blen);
ngtcp2_conn_extend_max_offset(ctx->qconn, blen);
}
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] DATA len=%zu", stream->id, blen);
return 0;
}
static int cb_h3_deferred_consume(nghttp3_conn *conn, int64_t stream3_id,
size_t consumed, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)conn;
(void)stream_user_data;
/* nghttp3 has consumed bytes on the QUIC stream and we need to
* tell the QUIC connection to increase its flow control */
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream3_id, consumed);
ngtcp2_conn_extend_max_offset(ctx->qconn, consumed);
return 0;
}
static int cb_h3_end_headers(nghttp3_conn *conn, int64_t sid,
int fin, void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
curl_int64_t stream_id = (curl_int64_t)sid;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
(void)conn;
(void)stream_id;
(void)fin;
(void)cf;
if(!stream)
return 0;
/* add a CRLF only if we've received some headers */
h3_xfer_write_resp_hd(cf, data, stream, STRCONST("\r\n"), stream->closed);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] end_headers, status=%d",
stream_id, stream->status_code);
if(stream->status_code / 100 != 1) {
stream->resp_hds_complete = TRUE;
}
h3_drain_stream(cf, data);
return 0;
}
static int cb_h3_recv_header(nghttp3_conn *conn, int64_t sid,
int32_t token, nghttp3_rcbuf *name,
nghttp3_rcbuf *value, uint8_t flags,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
curl_int64_t stream_id = (curl_int64_t)sid;
nghttp3_vec h3name = nghttp3_rcbuf_get_buf(name);
nghttp3_vec h3val = nghttp3_rcbuf_get_buf(value);
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
CURLcode result = CURLE_OK;
(void)conn;
(void)stream_id;
(void)token;
(void)flags;
(void)cf;
/* we might have cleaned up this transfer already */
if(!stream)
return 0;
if(token == NGHTTP3_QPACK_TOKEN__STATUS) {
result = Curl_http_decode_status(&stream->status_code,
(const char *)h3val.base, h3val.len);
if(result)
return -1;
Curl_dyn_reset(&ctx->scratch);
result = Curl_dyn_addn(&ctx->scratch, STRCONST("HTTP/3 "));
if(!result)
result = Curl_dyn_addn(&ctx->scratch,
(const char *)h3val.base, h3val.len);
if(!result)
result = Curl_dyn_addn(&ctx->scratch, STRCONST(" \r\n"));
if(!result)
h3_xfer_write_resp_hd(cf, data, stream, Curl_dyn_ptr(&ctx->scratch),
Curl_dyn_len(&ctx->scratch), FALSE);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] status: %s",
stream_id, Curl_dyn_ptr(&ctx->scratch));
if(result) {
return -1;
}
}
else {
/* store as an HTTP1-style header */
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] header: %.*s: %.*s",
stream_id, (int)h3name.len, h3name.base,
(int)h3val.len, h3val.base);
Curl_dyn_reset(&ctx->scratch);
result = Curl_dyn_addn(&ctx->scratch,
(const char *)h3name.base, h3name.len);
if(!result)
result = Curl_dyn_addn(&ctx->scratch, STRCONST(": "));
if(!result)
result = Curl_dyn_addn(&ctx->scratch,
(const char *)h3val.base, h3val.len);
if(!result)
result = Curl_dyn_addn(&ctx->scratch, STRCONST("\r\n"));
if(!result)
h3_xfer_write_resp_hd(cf, data, stream, Curl_dyn_ptr(&ctx->scratch),
Curl_dyn_len(&ctx->scratch), FALSE);
}
return 0;
}
static int cb_h3_stop_sending(nghttp3_conn *conn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)conn;
(void)stream_user_data;
rv = ngtcp2_conn_shutdown_stream_read(ctx->qconn, 0, stream_id,
app_error_code);
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_h3_reset_stream(nghttp3_conn *conn, int64_t sid,
uint64_t app_error_code, void *user_data,
void *stream_user_data) {
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
curl_int64_t stream_id = (curl_int64_t)sid;
struct Curl_easy *data = stream_user_data;
int rv;
(void)conn;
(void)data;
rv = ngtcp2_conn_shutdown_stream_write(ctx->qconn, 0, stream_id,
app_error_code);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] reset -> %d", stream_id, rv);
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static nghttp3_callbacks ngh3_callbacks = {
cb_h3_acked_req_body, /* acked_stream_data */
cb_h3_stream_close,
cb_h3_recv_data,
cb_h3_deferred_consume,
NULL, /* begin_headers */
cb_h3_recv_header,
cb_h3_end_headers,
NULL, /* begin_trailers */
cb_h3_recv_header,
NULL, /* end_trailers */
cb_h3_stop_sending,
NULL, /* end_stream */
cb_h3_reset_stream,
NULL, /* shutdown */
NULL /* recv_settings */
};
static int init_ngh3_conn(struct Curl_cfilter *cf)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result;
int rc;
int64_t ctrl_stream_id, qpack_enc_stream_id, qpack_dec_stream_id;
if(ngtcp2_conn_get_streams_uni_left(ctx->qconn) < 3) {
return CURLE_QUIC_CONNECT_ERROR;
}
nghttp3_settings_default(&ctx->h3settings);
rc = nghttp3_conn_client_new(&ctx->h3conn,
&ngh3_callbacks,
&ctx->h3settings,
nghttp3_mem_default(),
cf);
if(rc) {
result = CURLE_OUT_OF_MEMORY;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &ctrl_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = nghttp3_conn_bind_control_stream(ctx->h3conn, ctrl_stream_id);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_enc_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_dec_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = nghttp3_conn_bind_qpack_streams(ctx->h3conn, qpack_enc_stream_id,
qpack_dec_stream_id);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
return CURLE_OK;
fail:
return result;
}
static ssize_t recv_closed_stream(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct h3_stream_ctx *stream,
CURLcode *err)
{
ssize_t nread = -1;
(void)cf;
if(stream->reset) {
failf(data,
"HTTP/3 stream %" CURL_PRId64 " reset by server", stream->id);
*err = data->req.bytecount? CURLE_PARTIAL_FILE : CURLE_HTTP3;
goto out;
}
else if(!stream->resp_hds_complete) {
failf(data,
"HTTP/3 stream %" CURL_PRId64 " was closed cleanly, but before "
"getting all response header fields, treated as error",
stream->id);
*err = CURLE_HTTP3;
goto out;
}
*err = CURLE_OK;
nread = 0;
out:
return nread;
}
/* incoming data frames on the h3 stream */
static ssize_t cf_ngtcp2_recv(struct Curl_cfilter *cf, struct Curl_easy *data,
char *buf, size_t blen, CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
ssize_t nread = -1;
struct cf_call_data save;
struct pkt_io_ctx pktx;
(void)ctx;
(void)buf;
CF_DATA_SAVE(save, cf, data);
DEBUGASSERT(cf->connected);
DEBUGASSERT(ctx);
DEBUGASSERT(ctx->qconn);
DEBUGASSERT(ctx->h3conn);
*err = CURLE_OK;
pktx_init(&pktx, cf, data);
if(!stream || ctx->conn_closed) {
*err = CURLE_RECV_ERROR;
goto out;
}
if(cf_progress_ingress(cf, data, &pktx)) {
*err = CURLE_RECV_ERROR;
nread = -1;
goto out;
}
if(stream->xfer_result) {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] xfer write failed", stream->id);
cf_ngtcp2_stream_close(cf, data, stream);
*err = stream->xfer_result;
nread = -1;
goto out;
}
else if(stream->closed) {
nread = recv_closed_stream(cf, data, stream, err);
goto out;
}
*err = CURLE_AGAIN;
nread = -1;
out:
if(cf_progress_egress(cf, data, &pktx)) {
*err = CURLE_SEND_ERROR;
nread = -1;
}
else {
CURLcode result2 = check_and_set_expiry(cf, data, &pktx);
if(result2) {
*err = result2;
nread = -1;
}
}
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_recv(blen=%zu) -> %zd, %d",
stream? stream->id : -1, blen, nread, *err);
CF_DATA_RESTORE(cf, save);
return nread;
}
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
uint64_t datalen, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
size_t skiplen;
(void)cf;
if(!stream)
return 0;
/* The server acknowledged `datalen` of bytes from our request body.
* This is a delta. We have kept this data in `sendbuf` for
* re-transmissions and can free it now. */
if(datalen >= (uint64_t)stream->sendbuf_len_in_flight)
skiplen = stream->sendbuf_len_in_flight;
else
skiplen = (size_t)datalen;
Curl_bufq_skip(&stream->sendbuf, skiplen);
stream->sendbuf_len_in_flight -= skiplen;
/* Everything ACKed, we resume upload processing */
if(!stream->sendbuf_len_in_flight) {
int rv = nghttp3_conn_resume_stream(conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
}
return 0;
}
static nghttp3_ssize
cb_h3_read_req_body(nghttp3_conn *conn, int64_t stream_id,
nghttp3_vec *vec, size_t veccnt,
uint32_t *pflags, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
ssize_t nwritten = 0;
size_t nvecs = 0;
(void)cf;
(void)conn;
(void)stream_id;
(void)user_data;
(void)veccnt;
if(!stream)
return NGHTTP3_ERR_CALLBACK_FAILURE;
/* nghttp3 keeps references to the sendbuf data until it is ACKed
* by the server (see `cb_h3_acked_req_body()` for updates).
* `sendbuf_len_in_flight` is the amount of bytes in `sendbuf`
* that we have already passed to nghttp3, but which have not been
* ACKed yet.
* Any amount beyond `sendbuf_len_in_flight` we need still to pass
* to nghttp3. Do that now, if we can. */
if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) {
nvecs = 0;
while(nvecs < veccnt &&
Curl_bufq_peek_at(&stream->sendbuf,
stream->sendbuf_len_in_flight,
(const unsigned char **)&vec[nvecs].base,
&vec[nvecs].len)) {
stream->sendbuf_len_in_flight += vec[nvecs].len;
nwritten += vec[nvecs].len;
++nvecs;
}
DEBUGASSERT(nvecs > 0); /* we SHOULD have been be able to peek */
}
if(nwritten > 0 && stream->upload_left != -1)
stream->upload_left -= nwritten;
/* When we stopped sending and everything in `sendbuf` is "in flight",
* we are at the end of the request body. */
if(stream->upload_left == 0) {
*pflags = NGHTTP3_DATA_FLAG_EOF;
stream->send_closed = TRUE;
}
else if(!nwritten) {
/* Not EOF, and nothing to give, we signal WOULDBLOCK. */
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read req body -> AGAIN",
stream->id);
return NGHTTP3_ERR_WOULDBLOCK;
}
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] read req body -> "
"%d vecs%s with %zu (buffered=%zu, left=%"
CURL_FORMAT_CURL_OFF_T ")",
stream->id, (int)nvecs,
*pflags == NGHTTP3_DATA_FLAG_EOF?" EOF":"",
nwritten, Curl_bufq_len(&stream->sendbuf),
stream->upload_left);
return (nghttp3_ssize)nvecs;
}
/* Index where :authority header field will appear in request header
field list. */
#define AUTHORITY_DST_IDX 3
static ssize_t h3_stream_open(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *buf, size_t len,
CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = NULL;
int64_t sid;
struct dynhds h2_headers;
size_t nheader;
nghttp3_nv *nva = NULL;
int rc = 0;
unsigned int i;
ssize_t nwritten = -1;
nghttp3_data_reader reader;
nghttp3_data_reader *preader = NULL;
Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST);
*err = h3_data_setup(cf, data);
if(*err)
goto out;
stream = H3_STREAM_CTX(ctx, data);
DEBUGASSERT(stream);
if(!stream) {
*err = CURLE_FAILED_INIT;
goto out;
}
nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err);
if(nwritten < 0)
goto out;
if(!stream->h1.done) {
/* need more data */
goto out;
}
DEBUGASSERT(stream->h1.req);
*err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data);
if(*err) {
nwritten = -1;
goto out;
}
/* no longer needed */
Curl_h1_req_parse_free(&stream->h1);
nheader = Curl_dynhds_count(&h2_headers);
nva = malloc(sizeof(nghttp3_nv) * nheader);
if(!nva) {
*err = CURLE_OUT_OF_MEMORY;
nwritten = -1;
goto out;
}
for(i = 0; i < nheader; ++i) {
struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i);
nva[i].name = (unsigned char *)e->name;
nva[i].namelen = e->namelen;
nva[i].value = (unsigned char *)e->value;
nva[i].valuelen = e->valuelen;
nva[i].flags = NGHTTP3_NV_FLAG_NONE;
}
rc = ngtcp2_conn_open_bidi_stream(ctx->qconn, &sid, data);
if(rc) {
failf(data, "can get bidi streams");
*err = CURLE_SEND_ERROR;
nwritten = -1;
goto out;
}
stream->id = (curl_int64_t)sid;
++ctx->used_bidi_streams;
switch(data->state.httpreq) {
case HTTPREQ_POST:
case HTTPREQ_POST_FORM:
case HTTPREQ_POST_MIME:
case HTTPREQ_PUT:
/* known request body size or -1 */
if(data->state.infilesize != -1)
stream->upload_left = data->state.infilesize;
else
/* data sending without specifying the data amount up front */
stream->upload_left = -1; /* unknown */
break;
default:
/* there is not request body */
stream->upload_left = 0; /* no request body */
break;
}
stream->send_closed = (stream->upload_left == 0);
if(!stream->send_closed) {
reader.read_data = cb_h3_read_req_body;
preader = &reader;
}
rc = nghttp3_conn_submit_request(ctx->h3conn, stream->id,
nva, nheader, preader, data);
if(rc) {
switch(rc) {
case NGHTTP3_ERR_CONN_CLOSING:
CURL_TRC_CF(data, cf, "h3sid[%" CURL_PRId64 "] failed to send, "
"connection is closing", stream->id);
break;
default:
CURL_TRC_CF(data, cf, "h3sid[%" CURL_PRId64 "] failed to send -> "
"%d (%s)", stream->id, rc, ngtcp2_strerror(rc));
break;
}
*err = CURLE_SEND_ERROR;
nwritten = -1;
goto out;
}
if(Curl_trc_is_verbose(data)) {
infof(data, "[HTTP/3] [%" CURL_PRId64 "] OPENED stream for %s",
stream->id, data->state.url);
for(i = 0; i < nheader; ++i) {
infof(data, "[HTTP/3] [%" CURL_PRId64 "] [%.*s: %.*s]", stream->id,
(int)nva[i].namelen, nva[i].name,
(int)nva[i].valuelen, nva[i].value);
}
}
out:
free(nva);
Curl_dynhds_free(&h2_headers);
return nwritten;
}
static ssize_t cf_ngtcp2_send(struct Curl_cfilter *cf, struct Curl_easy *data,
const void *buf, size_t len, CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
ssize_t sent = 0;
struct cf_call_data save;
struct pkt_io_ctx pktx;
CURLcode result;
CF_DATA_SAVE(save, cf, data);
DEBUGASSERT(cf->connected);
DEBUGASSERT(ctx->qconn);
DEBUGASSERT(ctx->h3conn);
pktx_init(&pktx, cf, data);
*err = CURLE_OK;
result = cf_progress_ingress(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
if(!stream || stream->id < 0) {
if(ctx->conn_closed) {
CURL_TRC_CF(data, cf, "cannot open stream on closed connection");
*err = CURLE_SEND_ERROR;
sent = -1;
goto out;
}
sent = h3_stream_open(cf, data, buf, len, err);
if(sent < 0) {
CURL_TRC_CF(data, cf, "failed to open stream -> %d", *err);
goto out;
}
stream = H3_STREAM_CTX(ctx, data);
}
else if(stream->xfer_result) {
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] xfer write failed", stream->id);
cf_ngtcp2_stream_close(cf, data, stream);
*err = stream->xfer_result;
sent = -1;
goto out;
}
else if(stream->upload_blocked_len) {
/* the data in `buf` has already been submitted or added to the
* buffers, but have been EAGAINed on the last invocation. */
DEBUGASSERT(len >= stream->upload_blocked_len);
if(len < stream->upload_blocked_len) {
/* Did we get called again with a smaller `len`? This should not
* happen. We are not prepared to handle that. */
failf(data, "HTTP/3 send again with decreased length");
*err = CURLE_HTTP3;
sent = -1;
goto out;
}
sent = (ssize_t)stream->upload_blocked_len;
stream->upload_blocked_len = 0;
}
else if(stream->closed) {
if(stream->resp_hds_complete) {
/* Server decided to close the stream after having sent us a final
* response. This is valid if it is not interested in the request
* body. This happens on 30x or 40x responses.
* We silently discard the data sent, since this is not a transport
* error situation. */
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] discarding data"
"on closed stream with response", stream->id);
*err = CURLE_OK;
sent = (ssize_t)len;
goto out;
}
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] send_body(len=%zu) "
"-> stream closed", stream->id, len);
*err = CURLE_HTTP3;
sent = -1;
goto out;
}
else if(ctx->conn_closed) {
CURL_TRC_CF(data, cf, "cannot send on closed connection");
*err = CURLE_SEND_ERROR;
sent = -1;
goto out;
}
else {
sent = Curl_bufq_write(&stream->sendbuf, buf, len, err);
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_send, add to "
"sendbuf(len=%zu) -> %zd, %d",
stream->id, len, sent, *err);
if(sent < 0) {
goto out;
}
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
}
result = cf_progress_egress(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
if(stream && sent > 0 && stream->sendbuf_len_in_flight) {
/* We have unacknowledged DATA and cannot report success to our
* caller. Instead we EAGAIN and remember how much we have already
* "written" into our various internal connection buffers. */
stream->upload_blocked_len = sent;
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_send(len=%zu), "
"%zu bytes in flight -> EGAIN", stream->id, len,
stream->sendbuf_len_in_flight);
*err = CURLE_AGAIN;
sent = -1;
}
out:
result = check_and_set_expiry(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
CURL_TRC_CF(data, cf, "[%" CURL_PRId64 "] cf_send(len=%zu) -> %zd, %d",
stream? stream->id : -1, len, sent, *err);
CF_DATA_RESTORE(cf, save);
return sent;
}
static CURLcode qng_verify_peer(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */
cf->conn->httpversion = 30;
cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX;
return Curl_vquic_tls_verify_peer(&ctx->tls, cf, data, &ctx->peer);
}
static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen,
struct sockaddr_storage *remote_addr,
socklen_t remote_addrlen, int ecn,
void *userp)
{
struct pkt_io_ctx *pktx = userp;
struct cf_ngtcp2_ctx *ctx = pktx->cf->ctx;
ngtcp2_pkt_info pi;
ngtcp2_path path;
int rv;
++pktx->pkt_count;
ngtcp2_addr_init(&path.local, (struct sockaddr *)&ctx->q.local_addr,
ctx->q.local_addrlen);
ngtcp2_addr_init(&path.remote, (struct sockaddr *)remote_addr,
remote_addrlen);
pi.ecn = (uint8_t)ecn;
rv = ngtcp2_conn_read_pkt(ctx->qconn, &path, &pi, pkt, pktlen, pktx->ts);
if(rv) {
CURL_TRC_CF(pktx->data, pktx->cf, "ingress, read_pkt -> %s (%d)",
ngtcp2_strerror(rv), rv);
cf_ngtcp2_err_set(pktx->cf, pktx->data, rv);
if(rv == NGTCP2_ERR_CRYPTO)
/* this is a "TLS problem", but a failed certificate verification
is a common reason for this */
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_RECV_ERROR;
}
return CURLE_OK;
}
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct pkt_io_ctx local_pktx;
size_t pkts_chunk = 128, i;
CURLcode result = CURLE_OK;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
}
result = Curl_vquic_tls_before_recv(&ctx->tls, cf, data);
if(result)
return result;
for(i = 0; i < 4; ++i) {
if(i)
pktx_update_time(pktx, cf);
pktx->pkt_count = 0;
result = vquic_recv_packets(cf, data, &ctx->q, pkts_chunk,
recv_pkt, pktx);
if(result || !pktx->pkt_count) /* error or got nothing */
break;
}
return result;
}
/**
* Read a network packet to send from ngtcp2 into `buf`.
* Return number of bytes written or -1 with *err set.
*/
static ssize_t read_pkt_to_send(void *userp,
unsigned char *buf, size_t buflen,
CURLcode *err)
{
struct pkt_io_ctx *x = userp;
struct cf_ngtcp2_ctx *ctx = x->cf->ctx;
nghttp3_vec vec[16];
nghttp3_ssize veccnt;
ngtcp2_ssize ndatalen;
uint32_t flags;
int64_t stream_id;
int fin;
ssize_t nwritten, n;
veccnt = 0;
stream_id = -1;
fin = 0;
/* ngtcp2 may want to put several frames from different streams into
* this packet. `NGTCP2_WRITE_STREAM_FLAG_MORE` tells it to do so.
* When `NGTCP2_ERR_WRITE_MORE` is returned, we *need* to make
* another iteration.
* When ngtcp2 is happy (because it has no other frame that would fit
* or it has nothing more to send), it returns the total length
* of the assembled packet. This may be 0 if there was nothing to send. */
nwritten = 0;
*err = CURLE_OK;
for(;;) {
if(ctx->h3conn && ngtcp2_conn_get_max_data_left(ctx->qconn)) {
veccnt = nghttp3_conn_writev_stream(ctx->h3conn, &stream_id, &fin, vec,
sizeof(vec) / sizeof(vec[0]));
if(veccnt < 0) {
failf(x->data, "nghttp3_conn_writev_stream returned error: %s",
nghttp3_strerror((int)veccnt));
cf_ngtcp2_h3_err_set(x->cf, x->data, (int)veccnt);
*err = CURLE_SEND_ERROR;
return -1;
}
}
flags = NGTCP2_WRITE_STREAM_FLAG_MORE |
(fin ? NGTCP2_WRITE_STREAM_FLAG_FIN : 0);
n = ngtcp2_conn_writev_stream(ctx->qconn, &x->ps.path,
NULL, buf, buflen,
&ndatalen, flags, stream_id,
(const ngtcp2_vec *)vec, veccnt, x->ts);
if(n == 0) {
/* nothing to send */
*err = CURLE_AGAIN;
nwritten = -1;
goto out;
}
else if(n < 0) {
switch(n) {
case NGTCP2_ERR_STREAM_DATA_BLOCKED: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, x->data);
DEBUGASSERT(ndatalen == -1);
nghttp3_conn_block_stream(ctx->h3conn, stream_id);
CURL_TRC_CF(x->data, x->cf, "[%" CURL_PRId64 "] block quic flow",
(curl_int64_t)stream_id);
DEBUGASSERT(stream);
if(stream)
stream->quic_flow_blocked = TRUE;
n = 0;
break;
}
case NGTCP2_ERR_STREAM_SHUT_WR:
DEBUGASSERT(ndatalen == -1);
nghttp3_conn_shutdown_stream_write(ctx->h3conn, stream_id);
n = 0;
break;
case NGTCP2_ERR_WRITE_MORE:
/* ngtcp2 wants to send more. update the flow of the stream whose data
* is in the buffer and continue */
DEBUGASSERT(ndatalen >= 0);
n = 0;
break;
default:
DEBUGASSERT(ndatalen == -1);
failf(x->data, "ngtcp2_conn_writev_stream returned error: %s",
ngtcp2_strerror((int)n));
cf_ngtcp2_err_set(x->cf, x->data, (int)n);
*err = CURLE_SEND_ERROR;
nwritten = -1;
goto out;
}
}
if(ndatalen >= 0) {
/* we add the amount of data bytes to the flow windows */
int rv = nghttp3_conn_add_write_offset(ctx->h3conn, stream_id, ndatalen);
if(rv) {
failf(x->data, "nghttp3_conn_add_write_offset returned error: %s\n",
nghttp3_strerror(rv));
return CURLE_SEND_ERROR;
}
}
if(n > 0) {
/* packet assembled, leave */
nwritten = n;
goto out;
}
}
out:
return nwritten;
}
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
ssize_t nread;
size_t max_payload_size, path_max_payload_size, max_pktcnt;
size_t pktcnt = 0;
size_t gsolen = 0; /* this disables gso until we have a clue */
CURLcode curlcode;
struct pkt_io_ctx local_pktx;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
ngtcp2_path_storage_zero(&pktx->ps);
}
curlcode = vquic_flush(cf, data, &ctx->q);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
/* In UDP, there is a maximum theoretical packet paload length and
* a minimum payload length that is "guaranteed" to work.
* To detect if this minimum payload can be increased, ngtcp2 sends
* now and then a packet payload larger than the minimum. It that
* is ACKed by the peer, both parties know that it works and
* the subsequent packets can use a larger one.
* This is called PMTUD (Path Maximum Transmission Unit Discovery).
* Since a PMTUD might be rejected right on send, we do not want it
* be followed by other packets of lesser size. Because those would
* also fail then. So, if we detect a PMTUD while buffering, we flush.
*/
max_payload_size = ngtcp2_conn_get_max_tx_udp_payload_size(ctx->qconn);
path_max_payload_size =
ngtcp2_conn_get_path_max_tx_udp_payload_size(ctx->qconn);
/* maximum number of packets buffered before we flush to the socket */
max_pktcnt = CURLMIN(MAX_PKT_BURST,
ctx->q.sendbuf.chunk_size / max_payload_size);
for(;;) {
/* add the next packet to send, if any, to our buffer */
nread = Curl_bufq_sipn(&ctx->q.sendbuf, max_payload_size,
read_pkt_to_send, pktx, &curlcode);
if(nread < 0) {
if(curlcode != CURLE_AGAIN)
return curlcode;
/* Nothing more to add, flush and leave */
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
goto out;
}
DEBUGASSERT(nread > 0);
if(pktcnt == 0) {
/* first packet in buffer. This is either of a known, "good"
* payload size or it is a PMTUD. We'll see. */
gsolen = (size_t)nread;
}
else if((size_t)nread > gsolen ||
(gsolen > path_max_payload_size && (size_t)nread != gsolen)) {
/* The just added packet is a PMTUD *or* the one(s) before the
* just added were PMTUD and the last one is smaller.
* Flush the buffer before the last add. */
curlcode = vquic_send_tail_split(cf, data, &ctx->q,
gsolen, nread, nread);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
pktcnt = 0;
continue;
}
if(++pktcnt >= max_pktcnt || (size_t)nread < gsolen) {
/* Reached MAX_PKT_BURST *or*
* the capacity of our buffer *or*
* last add was shorter than the previous ones, flush */
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
/* pktbuf has been completely sent */
pktcnt = 0;
}
}
out:
return CURLE_OK;
}
/*
* Called from transfer.c:data_pending to know if we should keep looping
* to receive more data from the connection.
*/
static bool cf_ngtcp2_data_pending(struct Curl_cfilter *cf,
const struct Curl_easy *data)
{
(void)cf;
(void)data;
return FALSE;
}
static CURLcode h3_data_pause(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool pause)
{
/* TODO: there seems right now no API in ngtcp2 to shrink/enlarge
* the streams windows. As we do in HTTP/2. */
if(!pause) {
h3_drain_stream(cf, data);
Curl_expire(data, 0, EXPIRE_RUN_NOW);
}
return CURLE_OK;
}
static CURLcode cf_ngtcp2_data_event(struct Curl_cfilter *cf,
struct Curl_easy *data,
int event, int arg1, void *arg2)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result = CURLE_OK;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
(void)arg1;
(void)arg2;
switch(event) {
case CF_CTRL_DATA_SETUP:
break;
case CF_CTRL_DATA_PAUSE:
result = h3_data_pause(cf, data, (arg1 != 0));
break;
case CF_CTRL_DATA_DETACH:
h3_data_done(cf, data);
break;
case CF_CTRL_DATA_DONE:
h3_data_done(cf, data);
break;
case CF_CTRL_DATA_DONE_SEND: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
if(stream && !stream->send_closed) {
stream->send_closed = TRUE;
stream->upload_left = Curl_bufq_len(&stream->sendbuf);
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
}
break;
}
case CF_CTRL_DATA_IDLE: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(ctx, data);
CURL_TRC_CF(data, cf, "data idle");
if(stream && !stream->closed) {
result = check_and_set_expiry(cf, data, NULL);
if(result)
CURL_TRC_CF(data, cf, "data idle, check_and_set_expiry -> %d", result);
}
break;
}
default:
break;
}
CF_DATA_RESTORE(cf, save);
return result;
}
static void cf_ngtcp2_ctx_clear(struct cf_ngtcp2_ctx *ctx)
{
struct cf_call_data save = ctx->call_data;
if(ctx->qlogfd != -1) {
close(ctx->qlogfd);
}
Curl_vquic_tls_cleanup(&ctx->tls);
vquic_ctx_free(&ctx->q);
if(ctx->h3conn)
nghttp3_conn_del(ctx->h3conn);
if(ctx->qconn)
ngtcp2_conn_del(ctx->qconn);
Curl_bufcp_free(&ctx->stream_bufcp);
Curl_dyn_free(&ctx->scratch);
Curl_hash_clean(&ctx->streams);
Curl_hash_destroy(&ctx->streams);
Curl_ssl_peer_cleanup(&ctx->peer);
memset(ctx, 0, sizeof(*ctx));
ctx->qlogfd = -1;
ctx->call_data = save;
}
static void cf_ngtcp2_conn_close(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
if(ctx && ctx->qconn && !ctx->conn_closed) {
char buffer[NGTCP2_MAX_UDP_PAYLOAD_SIZE];
struct pkt_io_ctx pktx;
ngtcp2_ssize rc;
ctx->conn_closed = TRUE;
pktx_init(&pktx, cf, data);
rc = ngtcp2_conn_write_connection_close(ctx->qconn, NULL, /* path */
NULL, /* pkt_info */
(uint8_t *)buffer, sizeof(buffer),
&ctx->last_error, pktx.ts);
CURL_TRC_CF(data, cf, "closing connection(err_type=%d, err_code=%"
CURL_PRIu64 ") -> %d", ctx->last_error.type,
(curl_uint64_t)ctx->last_error.error_code, (int)rc);
if(rc > 0) {
while((send(ctx->q.sockfd, buffer, (SEND_TYPE_ARG3)rc, 0) == -1) &&
SOCKERRNO == EINTR);
}
}
}
static void cf_ngtcp2_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
if(ctx && ctx->qconn) {
cf_ngtcp2_conn_close(cf, data);
cf_ngtcp2_ctx_clear(ctx);
CURL_TRC_CF(data, cf, "close");
}
cf->connected = FALSE;
CF_DATA_RESTORE(cf, save);
}
static void cf_ngtcp2_destroy(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
CURL_TRC_CF(data, cf, "destroy");
if(ctx) {
cf_ngtcp2_ctx_clear(ctx);
free(ctx);
}
cf->ctx = NULL;
/* No CF_DATA_RESTORE(cf, save) possible */
(void)save;
}
#ifdef USE_OPENSSL
/* The "new session" callback must return zero if the session can be removed
* or non-zero if the session has been put into the session cache.
*/
static int quic_ossl_new_session_cb(SSL *ssl, SSL_SESSION *ssl_sessionid)
{
struct Curl_cfilter *cf;
struct cf_ngtcp2_ctx *ctx;
struct Curl_easy *data;
ngtcp2_crypto_conn_ref *cref;
cref = (ngtcp2_crypto_conn_ref *)SSL_get_app_data(ssl);
cf = cref? cref->user_data : NULL;
ctx = cf? cf->ctx : NULL;
data = cf? CF_DATA_CURRENT(cf) : NULL;
if(cf && data && ctx) {
Curl_ossl_add_session(cf, data, &ctx->peer, ssl_sessionid);
return 1;
}
return 0;
}
#endif /* USE_OPENSSL */
static CURLcode tls_ctx_setup(struct Curl_cfilter *cf,
struct Curl_easy *data,
void *user_data)
{
struct curl_tls_ctx *ctx = user_data;
(void)cf;
#ifdef USE_OPENSSL
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
if(ngtcp2_crypto_boringssl_configure_client_context(ctx->ossl.ssl_ctx)
!= 0) {
failf(data, "ngtcp2_crypto_boringssl_configure_client_context failed");
return CURLE_FAILED_INIT;
}
#else
if(ngtcp2_crypto_quictls_configure_client_context(ctx->ossl.ssl_ctx) != 0) {
failf(data, "ngtcp2_crypto_quictls_configure_client_context failed");
return CURLE_FAILED_INIT;
}
#endif /* !OPENSSL_IS_BORINGSSL && !OPENSSL_IS_AWSLC */
/* Enable the session cache because it's a prerequisite for the
* "new session" callback. Use the "external storage" mode to prevent
* OpenSSL from creating an internal session cache.
*/
SSL_CTX_set_session_cache_mode(ctx->ossl.ssl_ctx,
SSL_SESS_CACHE_CLIENT |
SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_new_cb(ctx->ossl.ssl_ctx, quic_ossl_new_session_cb);
#elif defined(USE_GNUTLS)
if(ngtcp2_crypto_gnutls_configure_client_session(ctx->gtls.session) != 0) {
failf(data, "ngtcp2_crypto_gnutls_configure_client_session failed");
return CURLE_FAILED_INIT;
}
#elif defined(USE_WOLFSSL)
if(ngtcp2_crypto_wolfssl_configure_client_context(ctx->ssl_ctx) != 0) {
failf(data, "ngtcp2_crypto_wolfssl_configure_client_context failed");
return CURLE_FAILED_INIT;
}
#endif
return CURLE_OK;
}
/*
* Might be called twice for happy eyeballs.
*/
static CURLcode cf_connect_start(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rc;
int rv;
CURLcode result;
const struct Curl_sockaddr_ex *sockaddr = NULL;
int qfd;
ctx->version = NGTCP2_PROTO_VER_MAX;
ctx->max_stream_window = H3_STREAM_WINDOW_SIZE;
ctx->max_idle_ms = CURL_QUIC_MAX_IDLE_MS;
Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE,
H3_STREAM_POOL_SPARES);
Curl_dyn_init(&ctx->scratch, CURL_MAX_HTTP_HEADER);
Curl_hash_offt_init(&ctx->streams, 63, h3_stream_hash_free);
result = Curl_ssl_peer_init(&ctx->peer, cf, TRNSPRT_QUIC);
if(result)
return result;
#define H3_ALPN "\x2h3\x5h3-29"
result = Curl_vquic_tls_init(&ctx->tls, cf, data, &ctx->peer,
H3_ALPN, sizeof(H3_ALPN) - 1,
tls_ctx_setup, &ctx->tls, &ctx->conn_ref);
if(result)
return result;
#ifdef USE_OPENSSL
SSL_set_quic_use_legacy_codepoint(ctx->tls.ossl.ssl, 0);
#endif
ctx->dcid.datalen = NGTCP2_MAX_CIDLEN;
result = Curl_rand(data, ctx->dcid.data, NGTCP2_MAX_CIDLEN);
if(result)
return result;
ctx->scid.datalen = NGTCP2_MAX_CIDLEN;
result = Curl_rand(data, ctx->scid.data, NGTCP2_MAX_CIDLEN);
if(result)
return result;
(void)Curl_qlogdir(data, ctx->scid.data, NGTCP2_MAX_CIDLEN, &qfd);
ctx->qlogfd = qfd; /* -1 if failure above */
quic_settings(ctx, data, pktx);
result = vquic_ctx_init(&ctx->q);
if(result)
return result;
Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd, &sockaddr, NULL);
if(!sockaddr)
return CURLE_QUIC_CONNECT_ERROR;
ctx->q.local_addrlen = sizeof(ctx->q.local_addr);
rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr,
&ctx->q.local_addrlen);
if(rv == -1)
return CURLE_QUIC_CONNECT_ERROR;
ngtcp2_addr_init(&ctx->connected_path.local,
(struct sockaddr *)&ctx->q.local_addr,
ctx->q.local_addrlen);
ngtcp2_addr_init(&ctx->connected_path.remote,
&sockaddr->sa_addr, sockaddr->addrlen);
rc = ngtcp2_conn_client_new(&ctx->qconn, &ctx->dcid, &ctx->scid,
&ctx->connected_path,
NGTCP2_PROTO_VER_V1, &ng_callbacks,
&ctx->settings, &ctx->transport_params,
NULL, cf);
if(rc)
return CURLE_QUIC_CONNECT_ERROR;
#ifdef USE_OPENSSL
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.ossl.ssl);
#elif defined(USE_GNUTLS)
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.gtls.session);
#else
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->tls.ssl);
#endif
ngtcp2_ccerr_default(&ctx->last_error);
ctx->conn_ref.get_conn = get_conn;
ctx->conn_ref.user_data = cf;
return CURLE_OK;
}
static CURLcode cf_ngtcp2_connect(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool blocking, bool *done)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result = CURLE_OK;
struct cf_call_data save;
struct curltime now;
struct pkt_io_ctx pktx;
if(cf->connected) {
*done = TRUE;
return CURLE_OK;
}
/* Connect the UDP filter first */
if(!cf->next->connected) {
result = Curl_conn_cf_connect(cf->next, data, blocking, done);
if(result || !*done)
return result;
}
*done = FALSE;
now = Curl_now();
pktx_init(&pktx, cf, data);
CF_DATA_SAVE(save, cf, data);
if(ctx->reconnect_at.tv_sec && Curl_timediff(now, ctx->reconnect_at) < 0) {
/* Not time yet to attempt the next connect */
CURL_TRC_CF(data, cf, "waiting for reconnect time");
goto out;
}
if(!ctx->qconn) {
ctx->started_at = now;
result = cf_connect_start(cf, data, &pktx);
if(result)
goto out;
result = cf_progress_egress(cf, data, &pktx);
/* we do not expect to be able to recv anything yet */
goto out;
}
result = cf_progress_ingress(cf, data, &pktx);
if(result)
goto out;
result = cf_progress_egress(cf, data, &pktx);
if(result)
goto out;
if(ngtcp2_conn_get_handshake_completed(ctx->qconn)) {
ctx->handshake_at = now;
CURL_TRC_CF(data, cf, "handshake complete after %dms",
(int)Curl_timediff(now, ctx->started_at));
result = qng_verify_peer(cf, data);
if(!result) {
CURL_TRC_CF(data, cf, "peer verified");
cf->connected = TRUE;
cf->conn->alpn = CURL_HTTP_VERSION_3;
*done = TRUE;
connkeep(cf->conn, "HTTP/3 default");
}
}
out:
if(result == CURLE_RECV_ERROR && ctx->qconn &&
ngtcp2_conn_in_draining_period(ctx->qconn)) {
/* When a QUIC server instance is shutting down, it may send us a
* CONNECTION_CLOSE right away. Our connection then enters the DRAINING
* state. The CONNECT may work in the near future again. Indicate
* that as a "weird" reply. */
result = CURLE_WEIRD_SERVER_REPLY;
}
#ifndef CURL_DISABLE_VERBOSE_STRINGS
if(result) {
struct ip_quadruple ip;
Curl_cf_socket_peek(cf->next, data, NULL, NULL, &ip);
infof(data, "QUIC connect to %s port %u failed: %s",
ip.remote_ip, ip.remote_port, curl_easy_strerror(result));
}
#endif
if(!result && ctx->qconn) {
result = check_and_set_expiry(cf, data, &pktx);
}
if(result || *done)
CURL_TRC_CF(data, cf, "connect -> %d, done=%d", result, *done);
CF_DATA_RESTORE(cf, save);
return result;
}
static CURLcode cf_ngtcp2_query(struct Curl_cfilter *cf,
struct Curl_easy *data,
int query, int *pres1, void *pres2)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
switch(query) {
case CF_QUERY_MAX_CONCURRENT: {
DEBUGASSERT(pres1);
CF_DATA_SAVE(save, cf, data);
/* Set after transport params arrived and continually updated
* by callback. QUIC counts the number over the lifetime of the
* connection, ever increasing.
* We count the *open* transfers plus the budget for new ones. */
if(!ctx->qconn || ctx->conn_closed) {
*pres1 = 0;
}
else if(ctx->max_bidi_streams) {
uint64_t avail_bidi_streams = 0;
uint64_t max_streams = CONN_INUSE(cf->conn);
if(ctx->max_bidi_streams > ctx->used_bidi_streams)
avail_bidi_streams = ctx->max_bidi_streams - ctx->used_bidi_streams;
max_streams += avail_bidi_streams;
*pres1 = (max_streams > INT_MAX)? INT_MAX : (int)max_streams;
}
else /* transport params not arrived yet? take our default. */
*pres1 = Curl_multi_max_concurrent_streams(data->multi);
CURL_TRC_CF(data, cf, "query conn[%" CURL_FORMAT_CURL_OFF_T "]: "
"MAX_CONCURRENT -> %d (%zu in use)",
cf->conn->connection_id, *pres1, CONN_INUSE(cf->conn));
CF_DATA_RESTORE(cf, save);
return CURLE_OK;
}
case CF_QUERY_CONNECT_REPLY_MS:
if(ctx->q.got_first_byte) {
timediff_t ms = Curl_timediff(ctx->q.first_byte_at, ctx->started_at);
*pres1 = (ms < INT_MAX)? (int)ms : INT_MAX;
}
else
*pres1 = -1;
return CURLE_OK;
case CF_QUERY_TIMER_CONNECT: {
struct curltime *when = pres2;
if(ctx->q.got_first_byte)
*when = ctx->q.first_byte_at;
return CURLE_OK;
}
case CF_QUERY_TIMER_APPCONNECT: {
struct curltime *when = pres2;
if(cf->connected)
*when = ctx->handshake_at;
return CURLE_OK;
}
default:
break;
}
return cf->next?
cf->next->cft->query(cf->next, data, query, pres1, pres2) :
CURLE_UNKNOWN_OPTION;
}
static bool cf_ngtcp2_conn_is_alive(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *input_pending)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
bool alive = FALSE;
const ngtcp2_transport_params *rp;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
*input_pending = FALSE;
if(!ctx->qconn || ctx->conn_closed)
goto out;
/* Both sides of the QUIC connection announce they max idle times in
* the transport parameters. Look at the minimum of both and if
* we exceed this, regard the connection as dead. The other side
* may have completely purged it and will no longer respond
* to any packets from us. */
rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn);
if(rp) {
timediff_t idletime;
uint64_t idle_ms = ctx->max_idle_ms;
if(rp->max_idle_timeout &&
(rp->max_idle_timeout / NGTCP2_MILLISECONDS) < idle_ms)
idle_ms = (rp->max_idle_timeout / NGTCP2_MILLISECONDS);
idletime = Curl_timediff(Curl_now(), ctx->q.last_io);
if(idletime > 0 && (uint64_t)idletime > idle_ms)
goto out;
}
if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending))
goto out;
alive = TRUE;
if(*input_pending) {
CURLcode result;
/* This happens before we've sent off a request and the connection is
not in use by any other transfer, there shouldn't be any data here,
only "protocol frames" */
*input_pending = FALSE;
result = cf_progress_ingress(cf, data, NULL);
CURL_TRC_CF(data, cf, "is_alive, progress ingress -> %d", result);
alive = result? FALSE : TRUE;
}
out:
CF_DATA_RESTORE(cf, save);
return alive;
}
struct Curl_cftype Curl_cft_http3 = {
"HTTP/3",
CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX,
0,
cf_ngtcp2_destroy,
cf_ngtcp2_connect,
cf_ngtcp2_close,
Curl_cf_def_get_host,
cf_ngtcp2_adjust_pollset,
cf_ngtcp2_data_pending,
cf_ngtcp2_send,
cf_ngtcp2_recv,
cf_ngtcp2_data_event,
cf_ngtcp2_conn_is_alive,
Curl_cf_def_conn_keep_alive,
cf_ngtcp2_query,
};
CURLcode Curl_cf_ngtcp2_create(struct Curl_cfilter **pcf,
struct Curl_easy *data,
struct connectdata *conn,
const struct Curl_addrinfo *ai)
{
struct cf_ngtcp2_ctx *ctx = NULL;
struct Curl_cfilter *cf = NULL, *udp_cf = NULL;
CURLcode result;
(void)data;
ctx = calloc(1, sizeof(*ctx));
if(!ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
ctx->qlogfd = -1;
cf_ngtcp2_ctx_clear(ctx);
result = Curl_cf_create(&cf, &Curl_cft_http3, ctx);
if(result)
goto out;
result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC);
if(result)
goto out;
cf->conn = conn;
udp_cf->conn = cf->conn;
udp_cf->sockindex = cf->sockindex;
cf->next = udp_cf;
out:
*pcf = (!result)? cf : NULL;
if(result) {
if(udp_cf)
Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE);
Curl_safefree(cf);
Curl_safefree(ctx);
}
return result;
}
bool Curl_conn_is_ngtcp2(const struct Curl_easy *data,
const struct connectdata *conn,
int sockindex)
{
struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL;
(void)data;
for(; cf; cf = cf->next) {
if(cf->cft == &Curl_cft_http3)
return TRUE;
if(cf->cft->flags & CF_TYPE_IP_CONNECT)
return FALSE;
}
return FALSE;
}
#endif