curl/tests/unit/unit1603.c
Stefan Eissing e101a7a8b0
multi: add multi->proto_hash, a key-value store for protocol data
- add `Curl_hash_add2()` that passes a destructor function for
  the element added. Call element destructor instead of hash
  destructor if present.
- multi: add `proto_hash` for protocol related information,
  remove `struct multi_ssl_backend_data`.
- openssl: use multi->proto_hash to keep x509 shared store
- schannel: use multi->proto_hash to keep x509 shared store
- vtls: remove Curl_free_multi_ssl_backend_data() and its
  equivalents in the TLS backends

Closes #13345
2024-05-26 00:15:01 +02:00

180 lines
6.9 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curlcheck.h"
#define ENABLE_CURLX_PRINTF
#include "curlx.h"
#include "hash.h"
#include "memdebug.h" /* LAST include file */
static struct Curl_hash hash_static;
static const size_t slots = 3;
static void mydtor(void *p)
{
/* Data are statically allocated */
(void)p; /* unused */
}
static size_t elem_dtor_calls;
static void my_elem_dtor(void *key, size_t key_len, void *p)
{
(void)p; /* unused */
(void)key; /* unused */
(void)key_len; /* unused */
++elem_dtor_calls;
}
static CURLcode unit_setup(void)
{
Curl_hash_init(&hash_static, slots, Curl_hash_str,
Curl_str_key_compare, mydtor);
return CURLE_OK;
}
static void unit_stop(void)
{
Curl_hash_destroy(&hash_static);
}
UNITTEST_START
char key1[] = "key1";
char key2[] = "key2b";
char key3[] = "key3";
char key4[] = "key4";
char notakey[] = "notakey";
char *nodep;
int rc;
/* Ensure the key hashes are as expected in order to test both hash
collisions and a full table. Unfortunately, the hashes can vary
between architectures. */
if(Curl_hash_str(key1, strlen(key1), slots) != 1 ||
Curl_hash_str(key2, strlen(key2), slots) != 0 ||
Curl_hash_str(key3, strlen(key3), slots) != 2 ||
Curl_hash_str(key4, strlen(key4), slots) != 1)
fprintf(stderr, "Warning: hashes are not computed as expected on this "
"architecture; test coverage will be less comprehensive\n");
nodep = Curl_hash_add(&hash_static, &key1, strlen(key1), &key1);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(nodep == key1, "hash retrieval failed");
nodep = Curl_hash_add(&hash_static, &key2, strlen(key2), &key2);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key2, strlen(key2));
fail_unless(nodep == key2, "hash retrieval failed");
nodep = Curl_hash_add(&hash_static, &key3, strlen(key3), &key3);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key3, strlen(key3));
fail_unless(nodep == key3, "hash retrieval failed");
/* The fourth element exceeds the number of slots & collides */
nodep = Curl_hash_add(&hash_static, &key4, strlen(key4), &key4);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(nodep == key4, "hash retrieval failed");
/* Make sure all elements are still accessible */
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(nodep == key1, "hash retrieval failed");
nodep = Curl_hash_pick(&hash_static, &key2, strlen(key2));
fail_unless(nodep == key2, "hash retrieval failed");
nodep = Curl_hash_pick(&hash_static, &key3, strlen(key3));
fail_unless(nodep == key3, "hash retrieval failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(nodep == key4, "hash retrieval failed");
/* Delete the second of two entries in a bucket */
rc = Curl_hash_delete(&hash_static, &key4, strlen(key4));
fail_unless(rc == 0, "hash delete failed");
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(nodep == key1, "hash retrieval failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(!nodep, "hash retrieval should have failed");
/* Insert that deleted node again */
nodep = Curl_hash_add(&hash_static, &key4, strlen(key4), &key4);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(nodep == key4, "hash retrieval failed");
/* Delete the first of two entries in a bucket */
rc = Curl_hash_delete(&hash_static, &key1, strlen(key1));
fail_unless(rc == 0, "hash delete failed");
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(!nodep, "hash retrieval should have failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(nodep == key4, "hash retrieval failed");
/* Delete the remaining one of two entries in a bucket */
rc = Curl_hash_delete(&hash_static, &key4, strlen(key4));
fail_unless(rc == 0, "hash delete failed");
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(!nodep, "hash retrieval should have failed");
nodep = Curl_hash_pick(&hash_static, &key4, strlen(key4));
fail_unless(!nodep, "hash retrieval should have failed");
/* Delete an already deleted node */
rc = Curl_hash_delete(&hash_static, &key4, strlen(key4));
fail_unless(rc, "hash delete should have failed");
/* Replace an existing node */
nodep = Curl_hash_add(&hash_static, &key1, strlen(key1), &notakey);
fail_unless(nodep, "insertion into hash failed");
nodep = Curl_hash_pick(&hash_static, &key1, strlen(key1));
fail_unless(nodep == notakey, "hash retrieval failed");
/* Make sure all remaining elements are still accessible */
nodep = Curl_hash_pick(&hash_static, &key2, strlen(key2));
fail_unless(nodep == key2, "hash retrieval failed");
nodep = Curl_hash_pick(&hash_static, &key3, strlen(key3));
fail_unless(nodep == key3, "hash retrieval failed");
/* Add element with own destructor */
nodep = Curl_hash_add2(&hash_static, &key1, strlen(key1), &key1,
my_elem_dtor);
fail_unless(nodep, "add2 insertion into hash failed");
fail_unless(elem_dtor_calls == 0, "element destructor count should be 0");
/* Add it again, should invoke destructor on first */
nodep = Curl_hash_add2(&hash_static, &key1, strlen(key1), &key1,
my_elem_dtor);
fail_unless(nodep, "add2 again, insertion into hash failed");
fail_unless(elem_dtor_calls == 1, "element destructor count should be 1");
/* remove, should invoke destructor */
rc = Curl_hash_delete(&hash_static, &key1, strlen(key1));
fail_unless(rc == 0, "hash delete failed");
fail_unless(elem_dtor_calls == 2, "element destructor count should be 1");
/* Clean up */
Curl_hash_clean(&hash_static);
UNITTEST_STOP