curl/lib/vtls/bearssl.c
Stefan Eissing e101a7a8b0
multi: add multi->proto_hash, a key-value store for protocol data
- add `Curl_hash_add2()` that passes a destructor function for
  the element added. Call element destructor instead of hash
  destructor if present.
- multi: add `proto_hash` for protocol related information,
  remove `struct multi_ssl_backend_data`.
- openssl: use multi->proto_hash to keep x509 shared store
- schannel: use multi->proto_hash to keep x509 shared store
- vtls: remove Curl_free_multi_ssl_backend_data() and its
  equivalents in the TLS backends

Closes #13345
2024-05-26 00:15:01 +02:00

1138 lines
35 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Michael Forney, <mforney@mforney.org>
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curl_setup.h"
#ifdef USE_BEARSSL
#include <bearssl.h>
#include "bearssl.h"
#include "cipher_suite.h"
#include "urldata.h"
#include "sendf.h"
#include "inet_pton.h"
#include "vtls.h"
#include "vtls_int.h"
#include "connect.h"
#include "select.h"
#include "multiif.h"
#include "curl_printf.h"
/* The last #include files should be: */
#include "curl_memory.h"
#include "memdebug.h"
struct x509_context {
const br_x509_class *vtable;
br_x509_minimal_context minimal;
br_x509_decoder_context decoder;
bool verifyhost;
bool verifypeer;
int cert_num;
};
struct bearssl_ssl_backend_data {
br_ssl_client_context ctx;
struct x509_context x509;
unsigned char buf[BR_SSL_BUFSIZE_BIDI];
br_x509_trust_anchor *anchors;
size_t anchors_len;
const char *protocols[ALPN_ENTRIES_MAX];
/* SSL client context is active */
bool active;
/* size of pending write, yet to be flushed */
size_t pending_write;
};
struct cafile_parser {
CURLcode err;
bool in_cert;
br_x509_decoder_context xc;
/* array of trust anchors loaded from CAfile */
br_x509_trust_anchor *anchors;
size_t anchors_len;
/* buffer for DN data */
unsigned char dn[1024];
size_t dn_len;
};
#define CAFILE_SOURCE_PATH 1
#define CAFILE_SOURCE_BLOB 2
struct cafile_source {
int type;
const char *data;
size_t len;
};
static void append_dn(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->err != CURLE_OK || !ca->in_cert)
return;
if(sizeof(ca->dn) - ca->dn_len < len) {
ca->err = CURLE_FAILED_INIT;
return;
}
memcpy(ca->dn + ca->dn_len, buf, len);
ca->dn_len += len;
}
static void x509_push(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->in_cert)
br_x509_decoder_push(&ca->xc, buf, len);
}
static CURLcode load_cafile(struct cafile_source *source,
br_x509_trust_anchor **anchors,
size_t *anchors_len)
{
struct cafile_parser ca;
br_pem_decoder_context pc;
br_x509_trust_anchor *ta;
size_t ta_size;
br_x509_trust_anchor *new_anchors;
size_t new_anchors_len;
br_x509_pkey *pkey;
FILE *fp = 0;
unsigned char buf[BUFSIZ];
const unsigned char *p = NULL;
const char *name;
size_t n = 0, i, pushed;
DEBUGASSERT(source->type == CAFILE_SOURCE_PATH
|| source->type == CAFILE_SOURCE_BLOB);
if(source->type == CAFILE_SOURCE_PATH) {
fp = fopen(source->data, "rb");
if(!fp)
return CURLE_SSL_CACERT_BADFILE;
}
if(source->type == CAFILE_SOURCE_BLOB && source->len > (size_t)INT_MAX)
return CURLE_SSL_CACERT_BADFILE;
ca.err = CURLE_OK;
ca.in_cert = FALSE;
ca.anchors = NULL;
ca.anchors_len = 0;
br_pem_decoder_init(&pc);
br_pem_decoder_setdest(&pc, x509_push, &ca);
do {
if(source->type == CAFILE_SOURCE_PATH) {
n = fread(buf, 1, sizeof(buf), fp);
if(n == 0)
break;
p = buf;
}
else if(source->type == CAFILE_SOURCE_BLOB) {
n = source->len;
p = (unsigned char *) source->data;
}
while(n) {
pushed = br_pem_decoder_push(&pc, p, n);
if(ca.err)
goto fail;
p += pushed;
n -= pushed;
switch(br_pem_decoder_event(&pc)) {
case 0:
break;
case BR_PEM_BEGIN_OBJ:
name = br_pem_decoder_name(&pc);
if(strcmp(name, "CERTIFICATE") && strcmp(name, "X509 CERTIFICATE"))
break;
br_x509_decoder_init(&ca.xc, append_dn, &ca);
ca.in_cert = TRUE;
ca.dn_len = 0;
break;
case BR_PEM_END_OBJ:
if(!ca.in_cert)
break;
ca.in_cert = FALSE;
if(br_x509_decoder_last_error(&ca.xc)) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
/* add trust anchor */
if(ca.anchors_len == SIZE_MAX / sizeof(ca.anchors[0])) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
new_anchors_len = ca.anchors_len + 1;
new_anchors = realloc(ca.anchors,
new_anchors_len * sizeof(ca.anchors[0]));
if(!new_anchors) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
ca.anchors = new_anchors;
ca.anchors_len = new_anchors_len;
ta = &ca.anchors[ca.anchors_len - 1];
ta->dn.data = NULL;
ta->flags = 0;
if(br_x509_decoder_isCA(&ca.xc))
ta->flags |= BR_X509_TA_CA;
pkey = br_x509_decoder_get_pkey(&ca.xc);
if(!pkey) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
ta->pkey = *pkey;
/* calculate space needed for trust anchor data */
ta_size = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta_size += pkey->key.rsa.nlen + pkey->key.rsa.elen;
break;
case BR_KEYTYPE_EC:
ta_size += pkey->key.ec.qlen;
break;
default:
ca.err = CURLE_FAILED_INIT;
goto fail;
}
/* fill in trust anchor DN and public key data */
ta->dn.data = malloc(ta_size);
if(!ta->dn.data) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
memcpy(ta->dn.data, ca.dn, ca.dn_len);
ta->dn.len = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta->pkey.key.rsa.n = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.rsa.n, pkey->key.rsa.n, pkey->key.rsa.nlen);
ta->pkey.key.rsa.e = ta->pkey.key.rsa.n + ta->pkey.key.rsa.nlen;
memcpy(ta->pkey.key.rsa.e, pkey->key.rsa.e, pkey->key.rsa.elen);
break;
case BR_KEYTYPE_EC:
ta->pkey.key.ec.q = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.ec.q, pkey->key.ec.q, pkey->key.ec.qlen);
break;
}
break;
default:
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
}
} while(source->type != CAFILE_SOURCE_BLOB);
if(fp && ferror(fp))
ca.err = CURLE_READ_ERROR;
else if(ca.in_cert)
ca.err = CURLE_SSL_CACERT_BADFILE;
fail:
if(fp)
fclose(fp);
if(ca.err == CURLE_OK) {
*anchors = ca.anchors;
*anchors_len = ca.anchors_len;
}
else {
for(i = 0; i < ca.anchors_len; ++i)
free(ca.anchors[i].dn.data);
free(ca.anchors);
}
return ca.err;
}
static void x509_start_chain(const br_x509_class **ctx,
const char *server_name)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num = 0;
return;
}
if(!x509->verifyhost)
server_name = NULL;
x509->minimal.vtable->start_chain(&x509->minimal.vtable, server_name);
}
static void x509_start_cert(const br_x509_class **ctx, uint32_t length)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Only decode the first cert in the chain to obtain the public key */
if(x509->cert_num == 0)
br_x509_decoder_init(&x509->decoder, NULL, NULL);
return;
}
x509->minimal.vtable->start_cert(&x509->minimal.vtable, length);
}
static void x509_append(const br_x509_class **ctx, const unsigned char *buf,
size_t len)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
if(x509->cert_num == 0)
br_x509_decoder_push(&x509->decoder, buf, len);
return;
}
x509->minimal.vtable->append(&x509->minimal.vtable, buf, len);
}
static void x509_end_cert(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num++;
return;
}
x509->minimal.vtable->end_cert(&x509->minimal.vtable);
}
static unsigned x509_end_chain(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
return br_x509_decoder_last_error(&x509->decoder);
}
return x509->minimal.vtable->end_chain(&x509->minimal.vtable);
}
static const br_x509_pkey *x509_get_pkey(const br_x509_class *const *ctx,
unsigned *usages)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Nothing in the chain is verified, just return the public key of the
first certificate and allow its usage for both TLS_RSA_* and
TLS_ECDHE_* */
if(usages)
*usages = BR_KEYTYPE_KEYX | BR_KEYTYPE_SIGN;
return br_x509_decoder_get_pkey(&x509->decoder);
}
return x509->minimal.vtable->get_pkey(&x509->minimal.vtable, usages);
}
static const br_x509_class x509_vtable = {
sizeof(struct x509_context),
x509_start_chain,
x509_start_cert,
x509_append,
x509_end_cert,
x509_end_chain,
x509_get_pkey
};
static const uint16_t ciphertable[] = {
/* RFC 2246 TLS 1.0 */
BR_TLS_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */
/* RFC 3268 TLS 1.0 AES */
BR_TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */
BR_TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */
/* RFC 5246 TLS 1.2 */
BR_TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */
BR_TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */
/* RFC 5288 TLS 1.2 AES GCM */
BR_TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */
BR_TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */
/* RFC 4492 TLS 1.0 ECC */
BR_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */
BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */
BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */
BR_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */
BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */
BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */
BR_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */
BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */
BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */
BR_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */
BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */
BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */
/* RFC 5289 TLS 1.2 ECC HMAC SHA256/384 */
BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */
BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */
BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */
BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */
BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */
BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */
BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */
BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */
/* RFC 5289 TLS 1.2 GCM */
BR_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */
BR_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */
BR_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */
BR_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */
BR_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */
BR_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */
BR_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */
BR_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */
#ifdef BR_TLS_RSA_WITH_AES_128_CCM
/* RFC 6655 TLS 1.2 CCM
Supported since BearSSL 0.6 */
BR_TLS_RSA_WITH_AES_128_CCM, /* 0xC09C */
BR_TLS_RSA_WITH_AES_256_CCM, /* 0xC09D */
BR_TLS_RSA_WITH_AES_128_CCM_8, /* 0xC0A0 */
BR_TLS_RSA_WITH_AES_256_CCM_8, /* 0xC0A1 */
/* RFC 7251 TLS 1.2 ECC CCM
Supported since BearSSL 0.6 */
BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM, /* 0xC0AC */
BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM, /* 0xC0AD */
BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, /* 0xC0AE */
BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, /* 0xC0AF */
#endif
/* RFC 7905 TLS 1.2 ChaCha20-Poly1305
Supported since BearSSL 0.2 */
BR_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */
BR_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */
};
#define NUM_OF_CIPHERS (sizeof(ciphertable) / sizeof(ciphertable[0]))
static CURLcode bearssl_set_selected_ciphers(struct Curl_easy *data,
br_ssl_engine_context *ssl_eng,
const char *ciphers)
{
uint16_t selected[NUM_OF_CIPHERS];
size_t count = 0, i;
const char *ptr, *end;
for(ptr = ciphers; ptr[0] != '\0' && count < NUM_OF_CIPHERS; ptr = end) {
uint16_t id = Curl_cipher_suite_walk_str(&ptr, &end);
/* Check if cipher is supported */
if(id) {
for(i = 0; i < NUM_OF_CIPHERS && ciphertable[i] != id; i++);
if(i == NUM_OF_CIPHERS)
id = 0;
}
if(!id) {
if(ptr[0] != '\0')
infof(data, "BearSSL: unknown cipher in list: \"%.*s\"",
(int) (end - ptr), ptr);
continue;
}
/* No duplicates allowed */
for(i = 0; i < count && selected[i] != id; i++);
if(i < count) {
infof(data, "BearSSL: duplicate cipher in list: \"%.*s\"",
(int) (end - ptr), ptr);
continue;
}
selected[count++] = id;
}
if(count == 0) {
failf(data, "BearSSL: no supported cipher in list");
return CURLE_SSL_CIPHER;
}
br_ssl_engine_set_suites(ssl_eng, selected, count);
return CURLE_OK;
}
static CURLcode bearssl_connect_step1(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
struct ssl_primary_config *conn_config = Curl_ssl_cf_get_primary_config(cf);
struct ssl_config_data *ssl_config = Curl_ssl_cf_get_config(cf, data);
const struct curl_blob *ca_info_blob = conn_config->ca_info_blob;
const char * const ssl_cafile =
/* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */
(ca_info_blob ? NULL : conn_config->CAfile);
const char *hostname = connssl->peer.hostname;
const bool verifypeer = conn_config->verifypeer;
const bool verifyhost = conn_config->verifyhost;
CURLcode ret;
unsigned version_min, version_max;
int session_set = 0;
DEBUGASSERT(backend);
CURL_TRC_CF(data, cf, "connect_step1");
switch(conn_config->version) {
case CURL_SSLVERSION_SSLv2:
failf(data, "BearSSL does not support SSLv2");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_SSLv3:
failf(data, "BearSSL does not support SSLv3");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_0:
version_min = BR_TLS10;
version_max = BR_TLS10;
break;
case CURL_SSLVERSION_TLSv1_1:
version_min = BR_TLS11;
version_max = BR_TLS11;
break;
case CURL_SSLVERSION_TLSv1_2:
version_min = BR_TLS12;
version_max = BR_TLS12;
break;
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
version_min = BR_TLS10;
version_max = BR_TLS12;
break;
default:
failf(data, "BearSSL: unknown CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
if(verifypeer) {
if(ca_info_blob) {
struct cafile_source source;
source.type = CAFILE_SOURCE_BLOB;
source.data = ca_info_blob->data;
source.len = ca_info_blob->len;
CURL_TRC_CF(data, cf, "connect_step1, load ca_info_blob");
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
failf(data, "error importing CA certificate blob");
return ret;
}
}
if(ssl_cafile) {
struct cafile_source source;
source.type = CAFILE_SOURCE_PATH;
source.data = ssl_cafile;
source.len = 0;
CURL_TRC_CF(data, cf, "connect_step1, load cafile");
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
failf(data, "error setting certificate verify locations."
" CAfile: %s", ssl_cafile);
return ret;
}
}
}
/* initialize SSL context */
br_ssl_client_init_full(&backend->ctx, &backend->x509.minimal,
backend->anchors, backend->anchors_len);
br_ssl_engine_set_versions(&backend->ctx.eng, version_min, version_max);
br_ssl_engine_set_buffer(&backend->ctx.eng, backend->buf,
sizeof(backend->buf), 1);
if(conn_config->cipher_list) {
/* Override the ciphers as specified. For the default cipher list see the
BearSSL source code of br_ssl_client_init_full() */
CURL_TRC_CF(data, cf, "connect_step1, set ciphers");
ret = bearssl_set_selected_ciphers(data, &backend->ctx.eng,
conn_config->cipher_list);
if(ret)
return ret;
}
/* initialize X.509 context */
backend->x509.vtable = &x509_vtable;
backend->x509.verifypeer = verifypeer;
backend->x509.verifyhost = verifyhost;
br_ssl_engine_set_x509(&backend->ctx.eng, &backend->x509.vtable);
if(ssl_config->primary.sessionid) {
void *session;
CURL_TRC_CF(data, cf, "connect_step1, check session cache");
Curl_ssl_sessionid_lock(data);
if(!Curl_ssl_getsessionid(cf, data, &connssl->peer, &session, NULL)) {
br_ssl_engine_set_session_parameters(&backend->ctx.eng, session);
session_set = 1;
infof(data, "BearSSL: reusing session ID");
}
Curl_ssl_sessionid_unlock(data);
}
if(connssl->alpn) {
struct alpn_proto_buf proto;
size_t i;
for(i = 0; i < connssl->alpn->count; ++i) {
backend->protocols[i] = connssl->alpn->entries[i];
}
br_ssl_engine_set_protocol_names(&backend->ctx.eng, backend->protocols,
connssl->alpn->count);
Curl_alpn_to_proto_str(&proto, connssl->alpn);
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, proto.data);
}
if(connssl->peer.type != CURL_SSL_PEER_DNS) {
if(verifyhost) {
failf(data, "BearSSL: "
"host verification of IP address is not supported");
return CURLE_PEER_FAILED_VERIFICATION;
}
hostname = NULL;
}
else {
if(!connssl->peer.sni) {
failf(data, "Failed to set SNI");
return CURLE_SSL_CONNECT_ERROR;
}
hostname = connssl->peer.sni;
CURL_TRC_CF(data, cf, "connect_step1, SNI set");
}
/* give application a chance to interfere with SSL set up. */
if(data->set.ssl.fsslctx) {
Curl_set_in_callback(data, true);
ret = (*data->set.ssl.fsslctx)(data, &backend->ctx,
data->set.ssl.fsslctxp);
Curl_set_in_callback(data, false);
if(ret) {
failf(data, "BearSSL: error signaled by ssl ctx callback");
return ret;
}
}
if(!br_ssl_client_reset(&backend->ctx, hostname, session_set))
return CURLE_FAILED_INIT;
backend->active = TRUE;
connssl->connecting_state = ssl_connect_2;
return CURLE_OK;
}
static void bearssl_adjust_pollset(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct easy_pollset *ps)
{
if(!cf->connected) {
curl_socket_t sock = Curl_conn_cf_get_socket(cf->next, data);
if(sock != CURL_SOCKET_BAD) {
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
unsigned state = br_ssl_engine_current_state(&backend->ctx.eng);
if(state & BR_SSL_SENDREC) {
Curl_pollset_set_out_only(data, ps, sock);
}
else {
Curl_pollset_set_in_only(data, ps, sock);
}
}
}
}
static CURLcode bearssl_run_until(struct Curl_cfilter *cf,
struct Curl_easy *data,
unsigned target)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
unsigned state;
unsigned char *buf;
size_t len;
ssize_t ret;
CURLcode result;
int err;
DEBUGASSERT(backend);
for(;;) {
state = br_ssl_engine_current_state(&backend->ctx.eng);
if(state & BR_SSL_CLOSED) {
err = br_ssl_engine_last_error(&backend->ctx.eng);
switch(err) {
case BR_ERR_OK:
/* TLS close notify */
if(connssl->state != ssl_connection_complete) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
return CURLE_OK;
case BR_ERR_X509_EXPIRED:
failf(data, "SSL: X.509 verification: "
"certificate is expired or not yet valid");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_BAD_SERVER_NAME:
failf(data, "SSL: X.509 verification: "
"expected server name was not found in the chain");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_NOT_TRUSTED:
failf(data, "SSL: X.509 verification: "
"chain could not be linked to a trust anchor");
return CURLE_PEER_FAILED_VERIFICATION;
}
/* X.509 errors are documented to have the range 32..63 */
if(err >= 32 && err < 64)
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_SSL_CONNECT_ERROR;
}
if(state & target)
return CURLE_OK;
if(state & BR_SSL_SENDREC) {
buf = br_ssl_engine_sendrec_buf(&backend->ctx.eng, &len);
ret = Curl_conn_cf_send(cf->next, data, (char *)buf, len, &result);
CURL_TRC_CF(data, cf, "ssl_send(len=%zu) -> %zd, %d", len, ret, result);
if(ret <= 0) {
return result;
}
br_ssl_engine_sendrec_ack(&backend->ctx.eng, ret);
}
else if(state & BR_SSL_RECVREC) {
buf = br_ssl_engine_recvrec_buf(&backend->ctx.eng, &len);
ret = Curl_conn_cf_recv(cf->next, data, (char *)buf, len, &result);
CURL_TRC_CF(data, cf, "ssl_recv(len=%zu) -> %zd, %d", len, ret, result);
if(ret == 0) {
failf(data, "SSL: EOF without close notify");
return CURLE_RECV_ERROR;
}
if(ret <= 0) {
return result;
}
br_ssl_engine_recvrec_ack(&backend->ctx.eng, ret);
}
}
}
static CURLcode bearssl_connect_step2(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
br_ssl_session_parameters session;
char cipher_str[64];
char ver_str[16];
CURLcode ret;
DEBUGASSERT(backend);
CURL_TRC_CF(data, cf, "connect_step2");
ret = bearssl_run_until(cf, data, BR_SSL_SENDAPP | BR_SSL_RECVAPP);
if(ret == CURLE_AGAIN)
return CURLE_OK;
if(ret == CURLE_OK) {
unsigned int tver;
if(br_ssl_engine_current_state(&backend->ctx.eng) == BR_SSL_CLOSED) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
connssl->connecting_state = ssl_connect_3;
/* Informational message */
tver = br_ssl_engine_get_version(&backend->ctx.eng);
if(tver == BR_TLS12)
strcpy(ver_str, "TLSv1.2");
else if(tver == BR_TLS11)
strcpy(ver_str, "TLSv1.1");
else if(tver == BR_TLS10)
strcpy(ver_str, "TLSv1.0");
else {
msnprintf(ver_str, sizeof(ver_str), "TLS 0x%04x", tver);
}
br_ssl_engine_get_session_parameters(&backend->ctx.eng, &session);
Curl_cipher_suite_get_str(session.cipher_suite, cipher_str,
sizeof(cipher_str), true);
infof(data, "BearSSL: %s connection using %s", ver_str, cipher_str);
}
return ret;
}
static void bearssl_session_free(void *sessionid, size_t idsize)
{
(void)idsize;
free(sessionid);
}
static CURLcode bearssl_connect_step3(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
struct ssl_config_data *ssl_config = Curl_ssl_cf_get_config(cf, data);
CURLcode ret;
DEBUGASSERT(ssl_connect_3 == connssl->connecting_state);
DEBUGASSERT(backend);
CURL_TRC_CF(data, cf, "connect_step3");
if(connssl->alpn) {
const char *proto;
proto = br_ssl_engine_get_selected_protocol(&backend->ctx.eng);
Curl_alpn_set_negotiated(cf, data, (const unsigned char *)proto,
proto? strlen(proto) : 0);
}
if(ssl_config->primary.sessionid) {
bool incache;
void *oldsession;
br_ssl_session_parameters *session;
session = malloc(sizeof(*session));
if(!session)
return CURLE_OUT_OF_MEMORY;
br_ssl_engine_get_session_parameters(&backend->ctx.eng, session);
Curl_ssl_sessionid_lock(data);
incache = !(Curl_ssl_getsessionid(cf, data, &connssl->peer,
&oldsession, NULL));
if(incache)
Curl_ssl_delsessionid(data, oldsession);
ret = Curl_ssl_addsessionid(cf, data, &connssl->peer, session, 0,
bearssl_session_free);
Curl_ssl_sessionid_unlock(data);
if(ret)
return ret;
}
connssl->connecting_state = ssl_connect_done;
return CURLE_OK;
}
static ssize_t bearssl_send(struct Curl_cfilter *cf, struct Curl_easy *data,
const void *buf, size_t len, CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
for(;;) {
*err = bearssl_run_until(cf, data, BR_SSL_SENDAPP);
if(*err)
return -1;
app = br_ssl_engine_sendapp_buf(&backend->ctx.eng, &applen);
if(!app) {
failf(data, "SSL: connection closed during write");
*err = CURLE_SEND_ERROR;
return -1;
}
if(backend->pending_write) {
applen = backend->pending_write;
backend->pending_write = 0;
return applen;
}
if(applen > len)
applen = len;
memcpy(app, buf, applen);
br_ssl_engine_sendapp_ack(&backend->ctx.eng, applen);
br_ssl_engine_flush(&backend->ctx.eng, 0);
backend->pending_write = applen;
}
}
static ssize_t bearssl_recv(struct Curl_cfilter *cf, struct Curl_easy *data,
char *buf, size_t len, CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
*err = bearssl_run_until(cf, data, BR_SSL_RECVAPP);
if(*err != CURLE_OK)
return -1;
app = br_ssl_engine_recvapp_buf(&backend->ctx.eng, &applen);
if(!app)
return 0;
if(applen > len)
applen = len;
memcpy(buf, app, applen);
br_ssl_engine_recvapp_ack(&backend->ctx.eng, applen);
return applen;
}
static CURLcode bearssl_connect_common(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool nonblocking,
bool *done)
{
CURLcode ret;
struct ssl_connect_data *connssl = cf->ctx;
curl_socket_t sockfd = Curl_conn_cf_get_socket(cf, data);
timediff_t timeout_ms;
int what;
CURL_TRC_CF(data, cf, "connect_common(blocking=%d)", !nonblocking);
/* check if the connection has already been established */
if(ssl_connection_complete == connssl->state) {
CURL_TRC_CF(data, cf, "connect_common, connected");
*done = TRUE;
return CURLE_OK;
}
if(ssl_connect_1 == connssl->connecting_state) {
ret = bearssl_connect_step1(cf, data);
if(ret)
return ret;
}
while(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
/* check allowed time left */
timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
/* if ssl is expecting something, check if it's available. */
if(ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
curl_socket_t writefd = ssl_connect_2_writing ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
curl_socket_t readfd = ssl_connect_2_reading ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
CURL_TRC_CF(data, cf, "connect_common, check socket");
what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd,
nonblocking?0:timeout_ms);
CURL_TRC_CF(data, cf, "connect_common, check socket -> %d", what);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
return CURLE_SSL_CONNECT_ERROR;
}
else if(0 == what) {
if(nonblocking) {
*done = FALSE;
return CURLE_OK;
}
else {
/* timeout */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
}
/* socket is readable or writable */
}
/* Run transaction, and return to the caller if it failed or if this
* connection is done nonblocking and this loop would execute again. This
* permits the owner of a multi handle to abort a connection attempt
* before step2 has completed while ensuring that a client using select()
* or epoll() will always have a valid fdset to wait on.
*/
ret = bearssl_connect_step2(cf, data);
if(ret || (nonblocking &&
(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state)))
return ret;
}
if(ssl_connect_3 == connssl->connecting_state) {
ret = bearssl_connect_step3(cf, data);
if(ret)
return ret;
}
if(ssl_connect_done == connssl->connecting_state) {
connssl->state = ssl_connection_complete;
*done = TRUE;
}
else
*done = FALSE;
/* Reset our connect state machine */
connssl->connecting_state = ssl_connect_1;
return CURLE_OK;
}
static size_t bearssl_version(char *buffer, size_t size)
{
return msnprintf(buffer, size, "BearSSL");
}
static bool bearssl_data_pending(struct Curl_cfilter *cf,
const struct Curl_easy *data)
{
struct ssl_connect_data *ctx = cf->ctx;
struct bearssl_ssl_backend_data *backend;
(void)data;
DEBUGASSERT(ctx && ctx->backend);
backend = (struct bearssl_ssl_backend_data *)ctx->backend;
return br_ssl_engine_current_state(&backend->ctx.eng) & BR_SSL_RECVAPP;
}
static CURLcode bearssl_random(struct Curl_easy *data UNUSED_PARAM,
unsigned char *entropy, size_t length)
{
static br_hmac_drbg_context ctx;
static bool seeded = FALSE;
if(!seeded) {
br_prng_seeder seeder;
br_hmac_drbg_init(&ctx, &br_sha256_vtable, NULL, 0);
seeder = br_prng_seeder_system(NULL);
if(!seeder || !seeder(&ctx.vtable))
return CURLE_FAILED_INIT;
seeded = TRUE;
}
br_hmac_drbg_generate(&ctx, entropy, length);
return CURLE_OK;
}
static CURLcode bearssl_connect(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
CURLcode ret;
bool done = FALSE;
ret = bearssl_connect_common(cf, data, FALSE, &done);
if(ret)
return ret;
DEBUGASSERT(done);
return CURLE_OK;
}
static CURLcode bearssl_connect_nonblocking(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *done)
{
return bearssl_connect_common(cf, data, TRUE, done);
}
static void *bearssl_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
DEBUGASSERT(backend);
return &backend->ctx;
}
static void bearssl_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct bearssl_ssl_backend_data *backend =
(struct bearssl_ssl_backend_data *)connssl->backend;
size_t i;
DEBUGASSERT(backend);
if(backend->active) {
backend->active = FALSE;
br_ssl_engine_close(&backend->ctx.eng);
(void)bearssl_run_until(cf, data, BR_SSL_CLOSED);
}
if(backend->anchors) {
for(i = 0; i < backend->anchors_len; ++i)
free(backend->anchors[i].dn.data);
Curl_safefree(backend->anchors);
}
}
static CURLcode bearssl_sha256sum(const unsigned char *input,
size_t inputlen,
unsigned char *sha256sum,
size_t sha256len UNUSED_PARAM)
{
br_sha256_context ctx;
br_sha256_init(&ctx);
br_sha256_update(&ctx, input, inputlen);
br_sha256_out(&ctx, sha256sum);
return CURLE_OK;
}
const struct Curl_ssl Curl_ssl_bearssl = {
{ CURLSSLBACKEND_BEARSSL, "bearssl" }, /* info */
SSLSUPP_CAINFO_BLOB | SSLSUPP_SSL_CTX | SSLSUPP_HTTPS_PROXY,
sizeof(struct bearssl_ssl_backend_data),
Curl_none_init, /* init */
Curl_none_cleanup, /* cleanup */
bearssl_version, /* version */
Curl_none_check_cxn, /* check_cxn */
Curl_none_shutdown, /* shutdown */
bearssl_data_pending, /* data_pending */
bearssl_random, /* random */
Curl_none_cert_status_request, /* cert_status_request */
bearssl_connect, /* connect */
bearssl_connect_nonblocking, /* connect_nonblocking */
bearssl_adjust_pollset, /* adjust_pollset */
bearssl_get_internals, /* get_internals */
bearssl_close, /* close_one */
Curl_none_close_all, /* close_all */
Curl_none_set_engine, /* set_engine */
Curl_none_set_engine_default, /* set_engine_default */
Curl_none_engines_list, /* engines_list */
Curl_none_false_start, /* false_start */
bearssl_sha256sum, /* sha256sum */
NULL, /* associate_connection */
NULL, /* disassociate_connection */
bearssl_recv, /* recv decrypted data */
bearssl_send, /* send data to encrypt */
};
#endif /* USE_BEARSSL */