mirror of
https://github.com/curl/curl.git
synced 2025-01-06 13:44:52 +08:00
b6b535994e
... and remove the old unused proto for the old Curl_splayremove version. Closes #6269
3566 lines
107 KiB
C
3566 lines
107 KiB
C
/***************************************************************************
|
|
* _ _ ____ _
|
|
* Project ___| | | | _ \| |
|
|
* / __| | | | |_) | |
|
|
* | (__| |_| | _ <| |___
|
|
* \___|\___/|_| \_\_____|
|
|
*
|
|
* Copyright (C) 1998 - 2020, Daniel Stenberg, <daniel@haxx.se>, et al.
|
|
*
|
|
* This software is licensed as described in the file COPYING, which
|
|
* you should have received as part of this distribution. The terms
|
|
* are also available at https://curl.se/docs/copyright.html.
|
|
*
|
|
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
|
|
* copies of the Software, and permit persons to whom the Software is
|
|
* furnished to do so, under the terms of the COPYING file.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
***************************************************************************/
|
|
|
|
#include "curl_setup.h"
|
|
|
|
#include <curl/curl.h>
|
|
|
|
#include "urldata.h"
|
|
#include "transfer.h"
|
|
#include "url.h"
|
|
#include "connect.h"
|
|
#include "progress.h"
|
|
#include "easyif.h"
|
|
#include "share.h"
|
|
#include "psl.h"
|
|
#include "multiif.h"
|
|
#include "sendf.h"
|
|
#include "timeval.h"
|
|
#include "http.h"
|
|
#include "select.h"
|
|
#include "warnless.h"
|
|
#include "speedcheck.h"
|
|
#include "conncache.h"
|
|
#include "multihandle.h"
|
|
#include "sigpipe.h"
|
|
#include "vtls/vtls.h"
|
|
#include "connect.h"
|
|
#include "http_proxy.h"
|
|
#include "http2.h"
|
|
#include "socketpair.h"
|
|
#include "socks.h"
|
|
/* The last 3 #include files should be in this order */
|
|
#include "curl_printf.h"
|
|
#include "curl_memory.h"
|
|
#include "memdebug.h"
|
|
|
|
/*
|
|
CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97
|
|
to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every
|
|
CURL handle takes 45-50 K memory, therefore this 3K are not significant.
|
|
*/
|
|
#ifndef CURL_SOCKET_HASH_TABLE_SIZE
|
|
#define CURL_SOCKET_HASH_TABLE_SIZE 911
|
|
#endif
|
|
|
|
#ifndef CURL_CONNECTION_HASH_SIZE
|
|
#define CURL_CONNECTION_HASH_SIZE 97
|
|
#endif
|
|
|
|
#define CURL_MULTI_HANDLE 0x000bab1e
|
|
|
|
#define GOOD_MULTI_HANDLE(x) \
|
|
((x) && (x)->type == CURL_MULTI_HANDLE)
|
|
|
|
static CURLMcode singlesocket(struct Curl_multi *multi,
|
|
struct Curl_easy *data);
|
|
static CURLMcode add_next_timeout(struct curltime now,
|
|
struct Curl_multi *multi,
|
|
struct Curl_easy *d);
|
|
static CURLMcode multi_timeout(struct Curl_multi *multi,
|
|
long *timeout_ms);
|
|
static void process_pending_handles(struct Curl_multi *multi);
|
|
|
|
#ifdef DEBUGBUILD
|
|
static const char * const statename[]={
|
|
"INIT",
|
|
"CONNECT_PEND",
|
|
"CONNECT",
|
|
"WAITRESOLVE",
|
|
"WAITCONNECT",
|
|
"WAITPROXYCONNECT",
|
|
"SENDPROTOCONNECT",
|
|
"PROTOCONNECT",
|
|
"DO",
|
|
"DOING",
|
|
"DO_MORE",
|
|
"DO_DONE",
|
|
"PERFORM",
|
|
"TOOFAST",
|
|
"DONE",
|
|
"COMPLETED",
|
|
"MSGSENT",
|
|
};
|
|
#endif
|
|
|
|
/* function pointer called once when switching TO a state */
|
|
typedef void (*init_multistate_func)(struct Curl_easy *data);
|
|
|
|
static void Curl_init_completed(struct Curl_easy *data)
|
|
{
|
|
/* this is a completed transfer */
|
|
|
|
/* Important: reset the conn pointer so that we don't point to memory
|
|
that could be freed anytime */
|
|
Curl_detach_connnection(data);
|
|
Curl_expire_clear(data); /* stop all timers */
|
|
}
|
|
|
|
/* always use this function to change state, to make debugging easier */
|
|
static void mstate(struct Curl_easy *data, CURLMstate state
|
|
#ifdef DEBUGBUILD
|
|
, int lineno
|
|
#endif
|
|
)
|
|
{
|
|
CURLMstate oldstate = data->mstate;
|
|
static const init_multistate_func finit[CURLM_STATE_LAST] = {
|
|
NULL, /* INIT */
|
|
NULL, /* CONNECT_PEND */
|
|
Curl_init_CONNECT, /* CONNECT */
|
|
NULL, /* WAITRESOLVE */
|
|
NULL, /* WAITCONNECT */
|
|
NULL, /* WAITPROXYCONNECT */
|
|
NULL, /* SENDPROTOCONNECT */
|
|
NULL, /* PROTOCONNECT */
|
|
Curl_connect_free, /* DO */
|
|
NULL, /* DOING */
|
|
NULL, /* DO_MORE */
|
|
NULL, /* DO_DONE */
|
|
NULL, /* PERFORM */
|
|
NULL, /* TOOFAST */
|
|
NULL, /* DONE */
|
|
Curl_init_completed, /* COMPLETED */
|
|
NULL /* MSGSENT */
|
|
};
|
|
|
|
#if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS)
|
|
(void) lineno;
|
|
#endif
|
|
|
|
if(oldstate == state)
|
|
/* don't bother when the new state is the same as the old state */
|
|
return;
|
|
|
|
data->mstate = state;
|
|
|
|
#if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
|
|
if(data->mstate >= CURLM_STATE_CONNECT_PEND &&
|
|
data->mstate < CURLM_STATE_COMPLETED) {
|
|
long connection_id = -5000;
|
|
|
|
if(data->conn)
|
|
connection_id = data->conn->connection_id;
|
|
|
|
infof(data,
|
|
"STATE: %s => %s handle %p; line %d (connection #%ld)\n",
|
|
statename[oldstate], statename[data->mstate],
|
|
(void *)data, lineno, connection_id);
|
|
}
|
|
#endif
|
|
|
|
if(state == CURLM_STATE_COMPLETED) {
|
|
/* changing to COMPLETED means there's one less easy handle 'alive' */
|
|
DEBUGASSERT(data->multi->num_alive > 0);
|
|
data->multi->num_alive--;
|
|
}
|
|
|
|
/* if this state has an init-function, run it */
|
|
if(finit[state])
|
|
finit[state](data);
|
|
}
|
|
|
|
#ifndef DEBUGBUILD
|
|
#define multistate(x,y) mstate(x,y)
|
|
#else
|
|
#define multistate(x,y) mstate(x,y, __LINE__)
|
|
#endif
|
|
|
|
/*
|
|
* We add one of these structs to the sockhash for each socket
|
|
*/
|
|
|
|
struct Curl_sh_entry {
|
|
struct Curl_hash transfers; /* hash of transfers using this socket */
|
|
unsigned int action; /* what combined action READ/WRITE this socket waits
|
|
for */
|
|
void *socketp; /* settable by users with curl_multi_assign() */
|
|
unsigned int users; /* number of transfers using this */
|
|
unsigned int readers; /* this many transfers want to read */
|
|
unsigned int writers; /* this many transfers want to write */
|
|
};
|
|
/* bits for 'action' having no bits means this socket is not expecting any
|
|
action */
|
|
#define SH_READ 1
|
|
#define SH_WRITE 2
|
|
|
|
/* look up a given socket in the socket hash, skip invalid sockets */
|
|
static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh,
|
|
curl_socket_t s)
|
|
{
|
|
if(s != CURL_SOCKET_BAD) {
|
|
/* only look for proper sockets */
|
|
return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define TRHASH_SIZE 13
|
|
static size_t trhash(void *key, size_t key_length, size_t slots_num)
|
|
{
|
|
size_t keyval = (size_t)*(struct Curl_easy **)key;
|
|
(void) key_length;
|
|
|
|
return (keyval % slots_num);
|
|
}
|
|
|
|
static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
|
|
{
|
|
(void)k1_len;
|
|
(void)k2_len;
|
|
|
|
return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2;
|
|
}
|
|
|
|
static void trhash_dtor(void *nada)
|
|
{
|
|
(void)nada;
|
|
}
|
|
|
|
|
|
/* make sure this socket is present in the hash for this handle */
|
|
static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh,
|
|
curl_socket_t s)
|
|
{
|
|
struct Curl_sh_entry *there = sh_getentry(sh, s);
|
|
struct Curl_sh_entry *check;
|
|
|
|
if(there) {
|
|
/* it is present, return fine */
|
|
return there;
|
|
}
|
|
|
|
/* not present, add it */
|
|
check = calloc(1, sizeof(struct Curl_sh_entry));
|
|
if(!check)
|
|
return NULL; /* major failure */
|
|
|
|
if(Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash,
|
|
trhash_compare, trhash_dtor)) {
|
|
free(check);
|
|
return NULL;
|
|
}
|
|
|
|
/* make/add new hash entry */
|
|
if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) {
|
|
Curl_hash_destroy(&check->transfers);
|
|
free(check);
|
|
return NULL; /* major failure */
|
|
}
|
|
|
|
return check; /* things are good in sockhash land */
|
|
}
|
|
|
|
|
|
/* delete the given socket + handle from the hash */
|
|
static void sh_delentry(struct Curl_sh_entry *entry,
|
|
struct Curl_hash *sh, curl_socket_t s)
|
|
{
|
|
Curl_hash_destroy(&entry->transfers);
|
|
|
|
/* We remove the hash entry. This will end up in a call to
|
|
sh_freeentry(). */
|
|
Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t));
|
|
}
|
|
|
|
/*
|
|
* free a sockhash entry
|
|
*/
|
|
static void sh_freeentry(void *freethis)
|
|
{
|
|
struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis;
|
|
|
|
free(p);
|
|
}
|
|
|
|
static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
|
|
{
|
|
(void) k1_len; (void) k2_len;
|
|
|
|
return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2));
|
|
}
|
|
|
|
static size_t hash_fd(void *key, size_t key_length, size_t slots_num)
|
|
{
|
|
curl_socket_t fd = *((curl_socket_t *) key);
|
|
(void) key_length;
|
|
|
|
return (fd % slots_num);
|
|
}
|
|
|
|
/*
|
|
* sh_init() creates a new socket hash and returns the handle for it.
|
|
*
|
|
* Quote from README.multi_socket:
|
|
*
|
|
* "Some tests at 7000 and 9000 connections showed that the socket hash lookup
|
|
* is somewhat of a bottle neck. Its current implementation may be a bit too
|
|
* limiting. It simply has a fixed-size array, and on each entry in the array
|
|
* it has a linked list with entries. So the hash only checks which list to
|
|
* scan through. The code I had used so for used a list with merely 7 slots
|
|
* (as that is what the DNS hash uses) but with 7000 connections that would
|
|
* make an average of 1000 nodes in each list to run through. I upped that to
|
|
* 97 slots (I believe a prime is suitable) and noticed a significant speed
|
|
* increase. I need to reconsider the hash implementation or use a rather
|
|
* large default value like this. At 9000 connections I was still below 10us
|
|
* per call."
|
|
*
|
|
*/
|
|
static int sh_init(struct Curl_hash *hash, int hashsize)
|
|
{
|
|
return Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare,
|
|
sh_freeentry);
|
|
}
|
|
|
|
/*
|
|
* multi_addmsg()
|
|
*
|
|
* Called when a transfer is completed. Adds the given msg pointer to
|
|
* the list kept in the multi handle.
|
|
*/
|
|
static CURLMcode multi_addmsg(struct Curl_multi *multi,
|
|
struct Curl_message *msg)
|
|
{
|
|
Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg,
|
|
&msg->list);
|
|
return CURLM_OK;
|
|
}
|
|
|
|
struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */
|
|
int chashsize) /* connection hash */
|
|
{
|
|
struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi));
|
|
|
|
if(!multi)
|
|
return NULL;
|
|
|
|
multi->type = CURL_MULTI_HANDLE;
|
|
|
|
if(Curl_mk_dnscache(&multi->hostcache))
|
|
goto error;
|
|
|
|
if(sh_init(&multi->sockhash, hashsize))
|
|
goto error;
|
|
|
|
if(Curl_conncache_init(&multi->conn_cache, chashsize))
|
|
goto error;
|
|
|
|
Curl_llist_init(&multi->msglist, NULL);
|
|
Curl_llist_init(&multi->pending, NULL);
|
|
|
|
multi->multiplexing = TRUE;
|
|
|
|
/* -1 means it not set by user, use the default value */
|
|
multi->maxconnects = -1;
|
|
multi->max_concurrent_streams = 100;
|
|
multi->ipv6_works = Curl_ipv6works(NULL);
|
|
|
|
#ifdef USE_WINSOCK
|
|
multi->wsa_event = WSACreateEvent();
|
|
if(multi->wsa_event == WSA_INVALID_EVENT)
|
|
goto error;
|
|
#else
|
|
#ifdef ENABLE_WAKEUP
|
|
if(Curl_socketpair(AF_UNIX, SOCK_STREAM, 0, multi->wakeup_pair) < 0) {
|
|
multi->wakeup_pair[0] = CURL_SOCKET_BAD;
|
|
multi->wakeup_pair[1] = CURL_SOCKET_BAD;
|
|
}
|
|
else if(curlx_nonblock(multi->wakeup_pair[0], TRUE) < 0 ||
|
|
curlx_nonblock(multi->wakeup_pair[1], TRUE) < 0) {
|
|
sclose(multi->wakeup_pair[0]);
|
|
sclose(multi->wakeup_pair[1]);
|
|
multi->wakeup_pair[0] = CURL_SOCKET_BAD;
|
|
multi->wakeup_pair[1] = CURL_SOCKET_BAD;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return multi;
|
|
|
|
error:
|
|
|
|
Curl_hash_destroy(&multi->sockhash);
|
|
Curl_hash_destroy(&multi->hostcache);
|
|
Curl_conncache_destroy(&multi->conn_cache);
|
|
Curl_llist_destroy(&multi->msglist, NULL);
|
|
Curl_llist_destroy(&multi->pending, NULL);
|
|
|
|
free(multi);
|
|
return NULL;
|
|
}
|
|
|
|
struct Curl_multi *curl_multi_init(void)
|
|
{
|
|
return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE,
|
|
CURL_CONNECTION_HASH_SIZE);
|
|
}
|
|
|
|
CURLMcode curl_multi_add_handle(struct Curl_multi *multi,
|
|
struct Curl_easy *data)
|
|
{
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
/* Verify that we got a somewhat good easy handle too */
|
|
if(!GOOD_EASY_HANDLE(data))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
/* Prevent users from adding same easy handle more than once and prevent
|
|
adding to more than one multi stack */
|
|
if(data->multi)
|
|
return CURLM_ADDED_ALREADY;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
/* Initialize timeout list for this handle */
|
|
Curl_llist_init(&data->state.timeoutlist, NULL);
|
|
|
|
/*
|
|
* No failure allowed in this function beyond this point. And no
|
|
* modification of easy nor multi handle allowed before this except for
|
|
* potential multi's connection cache growing which won't be undone in this
|
|
* function no matter what.
|
|
*/
|
|
if(data->set.errorbuffer)
|
|
data->set.errorbuffer[0] = 0;
|
|
|
|
/* set the easy handle */
|
|
multistate(data, CURLM_STATE_INIT);
|
|
|
|
/* for multi interface connections, we share DNS cache automatically if the
|
|
easy handle's one is currently not set. */
|
|
if(!data->dns.hostcache ||
|
|
(data->dns.hostcachetype == HCACHE_NONE)) {
|
|
data->dns.hostcache = &multi->hostcache;
|
|
data->dns.hostcachetype = HCACHE_MULTI;
|
|
}
|
|
|
|
/* Point to the shared or multi handle connection cache */
|
|
if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT)))
|
|
data->state.conn_cache = &data->share->conn_cache;
|
|
else
|
|
data->state.conn_cache = &multi->conn_cache;
|
|
data->state.lastconnect_id = -1;
|
|
|
|
#ifdef USE_LIBPSL
|
|
/* Do the same for PSL. */
|
|
if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL)))
|
|
data->psl = &data->share->psl;
|
|
else
|
|
data->psl = &multi->psl;
|
|
#endif
|
|
|
|
/* We add the new entry last in the list. */
|
|
data->next = NULL; /* end of the line */
|
|
if(multi->easyp) {
|
|
struct Curl_easy *last = multi->easylp;
|
|
last->next = data;
|
|
data->prev = last;
|
|
multi->easylp = data; /* the new last node */
|
|
}
|
|
else {
|
|
/* first node, make prev NULL! */
|
|
data->prev = NULL;
|
|
multi->easylp = multi->easyp = data; /* both first and last */
|
|
}
|
|
|
|
/* make the Curl_easy refer back to this multi handle */
|
|
data->multi = multi;
|
|
|
|
/* Set the timeout for this handle to expire really soon so that it will
|
|
be taken care of even when this handle is added in the midst of operation
|
|
when only the curl_multi_socket() API is used. During that flow, only
|
|
sockets that time-out or have actions will be dealt with. Since this
|
|
handle has no action yet, we make sure it times out to get things to
|
|
happen. */
|
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
|
|
|
/* increase the node-counter */
|
|
multi->num_easy++;
|
|
|
|
/* increase the alive-counter */
|
|
multi->num_alive++;
|
|
|
|
/* A somewhat crude work-around for a little glitch in Curl_update_timer()
|
|
that happens if the lastcall time is set to the same time when the handle
|
|
is removed as when the next handle is added, as then the check in
|
|
Curl_update_timer() that prevents calling the application multiple times
|
|
with the same timer info will not trigger and then the new handle's
|
|
timeout will not be notified to the app.
|
|
|
|
The work-around is thus simply to clear the 'lastcall' variable to force
|
|
Curl_update_timer() to always trigger a callback to the app when a new
|
|
easy handle is added */
|
|
memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
|
|
|
|
CONNCACHE_LOCK(data);
|
|
/* The closure handle only ever has default timeouts set. To improve the
|
|
state somewhat we clone the timeouts from each added handle so that the
|
|
closure handle always has the same timeouts as the most recently added
|
|
easy handle. */
|
|
data->state.conn_cache->closure_handle->set.timeout = data->set.timeout;
|
|
data->state.conn_cache->closure_handle->set.server_response_timeout =
|
|
data->set.server_response_timeout;
|
|
data->state.conn_cache->closure_handle->set.no_signal =
|
|
data->set.no_signal;
|
|
CONNCACHE_UNLOCK(data);
|
|
|
|
Curl_update_timer(multi);
|
|
return CURLM_OK;
|
|
}
|
|
|
|
#if 0
|
|
/* Debug-function, used like this:
|
|
*
|
|
* Curl_hash_print(multi->sockhash, debug_print_sock_hash);
|
|
*
|
|
* Enable the hash print function first by editing hash.c
|
|
*/
|
|
static void debug_print_sock_hash(void *p)
|
|
{
|
|
struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p;
|
|
|
|
fprintf(stderr, " [easy %p/magic %x/socket %d]",
|
|
(void *)sh->data, sh->data->magic, (int)sh->socket);
|
|
}
|
|
#endif
|
|
|
|
static CURLcode multi_done(struct Curl_easy *data,
|
|
CURLcode status, /* an error if this is called
|
|
after an error was detected */
|
|
bool premature)
|
|
{
|
|
CURLcode result;
|
|
struct connectdata *conn = data->conn;
|
|
unsigned int i;
|
|
|
|
DEBUGF(infof(data, "multi_done\n"));
|
|
|
|
if(data->state.done)
|
|
/* Stop if multi_done() has already been called */
|
|
return CURLE_OK;
|
|
|
|
conn->data = data; /* ensure the connection uses this transfer now */
|
|
|
|
/* Stop the resolver and free its own resources (but not dns_entry yet). */
|
|
Curl_resolver_kill(conn);
|
|
|
|
/* Cleanup possible redirect junk */
|
|
Curl_safefree(data->req.newurl);
|
|
Curl_safefree(data->req.location);
|
|
|
|
switch(status) {
|
|
case CURLE_ABORTED_BY_CALLBACK:
|
|
case CURLE_READ_ERROR:
|
|
case CURLE_WRITE_ERROR:
|
|
/* When we're aborted due to a callback return code it basically have to
|
|
be counted as premature as there is trouble ahead if we don't. We have
|
|
many callbacks and protocols work differently, we could potentially do
|
|
this more fine-grained in the future. */
|
|
premature = TRUE;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* this calls the protocol-specific function pointer previously set */
|
|
if(conn->handler->done)
|
|
result = conn->handler->done(conn, status, premature);
|
|
else
|
|
result = status;
|
|
|
|
if(CURLE_ABORTED_BY_CALLBACK != result) {
|
|
/* avoid this if we already aborted by callback to avoid this calling
|
|
another callback */
|
|
CURLcode rc = Curl_pgrsDone(conn);
|
|
if(!result && rc)
|
|
result = CURLE_ABORTED_BY_CALLBACK;
|
|
}
|
|
|
|
process_pending_handles(data->multi); /* connection / multiplex */
|
|
|
|
CONNCACHE_LOCK(data);
|
|
Curl_detach_connnection(data);
|
|
if(CONN_INUSE(conn)) {
|
|
/* Stop if still used. */
|
|
/* conn->data must not remain pointing to this transfer since it is going
|
|
away! Find another to own it! */
|
|
conn->data = conn->easyq.head->ptr;
|
|
CONNCACHE_UNLOCK(data);
|
|
DEBUGF(infof(data, "Connection still in use %zu, "
|
|
"no more multi_done now!\n",
|
|
conn->easyq.size));
|
|
return CURLE_OK;
|
|
}
|
|
conn->data = NULL; /* the connection now has no owner */
|
|
data->state.done = TRUE; /* called just now! */
|
|
|
|
if(conn->dns_entry) {
|
|
Curl_resolv_unlock(data, conn->dns_entry); /* done with this */
|
|
conn->dns_entry = NULL;
|
|
}
|
|
Curl_hostcache_prune(data);
|
|
Curl_safefree(data->state.ulbuf);
|
|
|
|
/* if the transfer was completed in a paused state there can be buffered
|
|
data left to free */
|
|
for(i = 0; i < data->state.tempcount; i++) {
|
|
Curl_dyn_free(&data->state.tempwrite[i].b);
|
|
}
|
|
data->state.tempcount = 0;
|
|
|
|
/* if data->set.reuse_forbid is TRUE, it means the libcurl client has
|
|
forced us to close this connection. This is ignored for requests taking
|
|
place in a NTLM/NEGOTIATE authentication handshake
|
|
|
|
if conn->bits.close is TRUE, it means that the connection should be
|
|
closed in spite of all our efforts to be nice, due to protocol
|
|
restrictions in our or the server's end
|
|
|
|
if premature is TRUE, it means this connection was said to be DONE before
|
|
the entire request operation is complete and thus we can't know in what
|
|
state it is for re-using, so we're forced to close it. In a perfect world
|
|
we can add code that keep track of if we really must close it here or not,
|
|
but currently we have no such detail knowledge.
|
|
*/
|
|
|
|
if((data->set.reuse_forbid
|
|
#if defined(USE_NTLM)
|
|
&& !(conn->http_ntlm_state == NTLMSTATE_TYPE2 ||
|
|
conn->proxy_ntlm_state == NTLMSTATE_TYPE2)
|
|
#endif
|
|
#if defined(USE_SPNEGO)
|
|
&& !(conn->http_negotiate_state == GSS_AUTHRECV ||
|
|
conn->proxy_negotiate_state == GSS_AUTHRECV)
|
|
#endif
|
|
) || conn->bits.close
|
|
|| (premature && !(conn->handler->flags & PROTOPT_STREAM))) {
|
|
CURLcode res2;
|
|
connclose(conn, "disconnecting");
|
|
Curl_conncache_remove_conn(data, conn, FALSE);
|
|
CONNCACHE_UNLOCK(data);
|
|
res2 = Curl_disconnect(data, conn, premature);
|
|
|
|
/* If we had an error already, make sure we return that one. But
|
|
if we got a new error, return that. */
|
|
if(!result && res2)
|
|
result = res2;
|
|
}
|
|
else {
|
|
char buffer[256];
|
|
const char *host =
|
|
#ifndef CURL_DISABLE_PROXY
|
|
conn->bits.socksproxy ?
|
|
conn->socks_proxy.host.dispname :
|
|
conn->bits.httpproxy ? conn->http_proxy.host.dispname :
|
|
#endif
|
|
conn->bits.conn_to_host ? conn->conn_to_host.dispname :
|
|
conn->host.dispname;
|
|
/* create string before returning the connection */
|
|
msnprintf(buffer, sizeof(buffer),
|
|
"Connection #%ld to host %s left intact",
|
|
conn->connection_id, host);
|
|
/* the connection is no longer in use by this transfer */
|
|
CONNCACHE_UNLOCK(data);
|
|
if(Curl_conncache_return_conn(data, conn)) {
|
|
/* remember the most recently used connection */
|
|
data->state.lastconnect_id = conn->connection_id;
|
|
infof(data, "%s\n", buffer);
|
|
}
|
|
else
|
|
data->state.lastconnect_id = -1;
|
|
}
|
|
|
|
Curl_safefree(data->state.buffer);
|
|
Curl_free_request_state(data);
|
|
return result;
|
|
}
|
|
|
|
static int close_connect_only(struct connectdata *conn, void *param)
|
|
{
|
|
struct Curl_easy *data = param;
|
|
|
|
if(data->state.lastconnect_id != conn->connection_id)
|
|
return 0;
|
|
|
|
if(conn->data != data)
|
|
return 1;
|
|
conn->data = NULL;
|
|
|
|
if(!conn->bits.connect_only)
|
|
return 1;
|
|
|
|
connclose(conn, "Removing connect-only easy handle");
|
|
conn->bits.connect_only = FALSE;
|
|
|
|
return 1;
|
|
}
|
|
|
|
CURLMcode curl_multi_remove_handle(struct Curl_multi *multi,
|
|
struct Curl_easy *data)
|
|
{
|
|
struct Curl_easy *easy = data;
|
|
bool premature;
|
|
bool easy_owns_conn;
|
|
struct Curl_llist_element *e;
|
|
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
/* Verify that we got a somewhat good easy handle too */
|
|
if(!GOOD_EASY_HANDLE(data))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
/* Prevent users from trying to remove same easy handle more than once */
|
|
if(!data->multi)
|
|
return CURLM_OK; /* it is already removed so let's say it is fine! */
|
|
|
|
/* Prevent users from trying to remove an easy handle from the wrong multi */
|
|
if(data->multi != multi)
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
premature = (data->mstate < CURLM_STATE_COMPLETED) ? TRUE : FALSE;
|
|
easy_owns_conn = (data->conn && (data->conn->data == easy)) ?
|
|
TRUE : FALSE;
|
|
|
|
/* If the 'state' is not INIT or COMPLETED, we might need to do something
|
|
nice to put the easy_handle in a good known state when this returns. */
|
|
if(premature) {
|
|
/* this handle is "alive" so we need to count down the total number of
|
|
alive connections when this is removed */
|
|
multi->num_alive--;
|
|
}
|
|
|
|
if(data->conn &&
|
|
data->mstate > CURLM_STATE_DO &&
|
|
data->mstate < CURLM_STATE_COMPLETED) {
|
|
/* Set connection owner so that the DONE function closes it. We can
|
|
safely do this here since connection is killed. */
|
|
data->conn->data = easy;
|
|
streamclose(data->conn, "Removed with partial response");
|
|
easy_owns_conn = TRUE;
|
|
}
|
|
|
|
if(data->conn) {
|
|
|
|
/* we must call multi_done() here (if we still own the connection) so that
|
|
we don't leave a half-baked one around */
|
|
if(easy_owns_conn) {
|
|
|
|
/* multi_done() clears the association between the easy handle and the
|
|
connection.
|
|
|
|
Note that this ignores the return code simply because there's
|
|
nothing really useful to do with it anyway! */
|
|
(void)multi_done(data, data->result, premature);
|
|
}
|
|
}
|
|
|
|
/* The timer must be shut down before data->multi is set to NULL, else the
|
|
timenode will remain in the splay tree after curl_easy_cleanup is
|
|
called. Do it after multi_done() in case that sets another time! */
|
|
Curl_expire_clear(data);
|
|
|
|
if(data->connect_queue.ptr)
|
|
/* the handle was in the pending list waiting for an available connection,
|
|
so go ahead and remove it */
|
|
Curl_llist_remove(&multi->pending, &data->connect_queue, NULL);
|
|
|
|
if(data->dns.hostcachetype == HCACHE_MULTI) {
|
|
/* stop using the multi handle's DNS cache, *after* the possible
|
|
multi_done() call above */
|
|
data->dns.hostcache = NULL;
|
|
data->dns.hostcachetype = HCACHE_NONE;
|
|
}
|
|
|
|
Curl_wildcard_dtor(&data->wildcard);
|
|
|
|
/* destroy the timeout list that is held in the easy handle, do this *after*
|
|
multi_done() as that may actually call Curl_expire that uses this */
|
|
Curl_llist_destroy(&data->state.timeoutlist, NULL);
|
|
|
|
/* change state without using multistate(), only to make singlesocket() do
|
|
what we want */
|
|
data->mstate = CURLM_STATE_COMPLETED;
|
|
singlesocket(multi, easy); /* to let the application know what sockets that
|
|
vanish with this handle */
|
|
|
|
/* Remove the association between the connection and the handle */
|
|
Curl_detach_connnection(data);
|
|
|
|
if(data->state.lastconnect_id != -1) {
|
|
/* Mark any connect-only connection for closure */
|
|
Curl_conncache_foreach(data, data->state.conn_cache,
|
|
data, &close_connect_only);
|
|
}
|
|
|
|
#ifdef USE_LIBPSL
|
|
/* Remove the PSL association. */
|
|
if(data->psl == &multi->psl)
|
|
data->psl = NULL;
|
|
#endif
|
|
|
|
/* as this was using a shared connection cache we clear the pointer to that
|
|
since we're not part of that multi handle anymore */
|
|
data->state.conn_cache = NULL;
|
|
|
|
data->multi = NULL; /* clear the association to this multi handle */
|
|
|
|
/* make sure there's no pending message in the queue sent from this easy
|
|
handle */
|
|
|
|
for(e = multi->msglist.head; e; e = e->next) {
|
|
struct Curl_message *msg = e->ptr;
|
|
|
|
if(msg->extmsg.easy_handle == easy) {
|
|
Curl_llist_remove(&multi->msglist, e, NULL);
|
|
/* there can only be one from this specific handle */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* make the previous node point to our next */
|
|
if(data->prev)
|
|
data->prev->next = data->next;
|
|
else
|
|
multi->easyp = data->next; /* point to first node */
|
|
|
|
/* make our next point to our previous node */
|
|
if(data->next)
|
|
data->next->prev = data->prev;
|
|
else
|
|
multi->easylp = data->prev; /* point to last node */
|
|
|
|
/* NOTE NOTE NOTE
|
|
We do not touch the easy handle here! */
|
|
multi->num_easy--; /* one less to care about now */
|
|
|
|
Curl_update_timer(multi);
|
|
return CURLM_OK;
|
|
}
|
|
|
|
/* Return TRUE if the application asked for multiplexing */
|
|
bool Curl_multiplex_wanted(const struct Curl_multi *multi)
|
|
{
|
|
return (multi && (multi->multiplexing));
|
|
}
|
|
|
|
/*
|
|
* Curl_detach_connnection() removes the given transfer from the connection.
|
|
*
|
|
* This is the only function that should clear data->conn. This will
|
|
* occasionally be called with the data->conn pointer already cleared.
|
|
*/
|
|
void Curl_detach_connnection(struct Curl_easy *data)
|
|
{
|
|
struct connectdata *conn = data->conn;
|
|
if(conn)
|
|
Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL);
|
|
data->conn = NULL;
|
|
}
|
|
|
|
/*
|
|
* Curl_attach_connnection() attaches this transfer to this connection.
|
|
*
|
|
* This is the only function that should assign data->conn
|
|
*/
|
|
void Curl_attach_connnection(struct Curl_easy *data,
|
|
struct connectdata *conn)
|
|
{
|
|
DEBUGASSERT(!data->conn);
|
|
DEBUGASSERT(conn);
|
|
data->conn = conn;
|
|
Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data,
|
|
&data->conn_queue);
|
|
}
|
|
|
|
static int waitconnect_getsock(struct connectdata *conn,
|
|
curl_socket_t *sock)
|
|
{
|
|
int i;
|
|
int s = 0;
|
|
int rc = 0;
|
|
|
|
#ifdef USE_SSL
|
|
#ifndef CURL_DISABLE_PROXY
|
|
if(CONNECT_FIRSTSOCKET_PROXY_SSL())
|
|
return Curl_ssl_getsock(conn, sock);
|
|
#endif
|
|
#endif
|
|
|
|
if(SOCKS_STATE(conn->cnnct.state))
|
|
return Curl_SOCKS_getsock(conn, sock, FIRSTSOCKET);
|
|
|
|
for(i = 0; i<2; i++) {
|
|
if(conn->tempsock[i] != CURL_SOCKET_BAD) {
|
|
sock[s] = conn->tempsock[i];
|
|
rc |= GETSOCK_WRITESOCK(s);
|
|
#ifdef ENABLE_QUIC
|
|
if(conn->transport == TRNSPRT_QUIC)
|
|
/* when connecting QUIC, we want to read the socket too */
|
|
rc |= GETSOCK_READSOCK(s);
|
|
#endif
|
|
s++;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int waitproxyconnect_getsock(struct connectdata *conn,
|
|
curl_socket_t *sock)
|
|
{
|
|
sock[0] = conn->sock[FIRSTSOCKET];
|
|
|
|
/* when we've sent a CONNECT to a proxy, we should rather wait for the
|
|
socket to become readable to be able to get the response headers */
|
|
if(conn->connect_state)
|
|
return GETSOCK_READSOCK(0);
|
|
|
|
return GETSOCK_WRITESOCK(0);
|
|
}
|
|
|
|
static int domore_getsock(struct connectdata *conn,
|
|
curl_socket_t *socks)
|
|
{
|
|
if(conn && conn->handler->domore_getsock)
|
|
return conn->handler->domore_getsock(conn, socks);
|
|
return GETSOCK_BLANK;
|
|
}
|
|
|
|
static int doing_getsock(struct connectdata *conn,
|
|
curl_socket_t *socks)
|
|
{
|
|
if(conn && conn->handler->doing_getsock)
|
|
return conn->handler->doing_getsock(conn, socks);
|
|
return GETSOCK_BLANK;
|
|
}
|
|
|
|
static int protocol_getsock(struct connectdata *conn,
|
|
curl_socket_t *socks)
|
|
{
|
|
if(conn->handler->proto_getsock)
|
|
return conn->handler->proto_getsock(conn, socks);
|
|
/* Backup getsock logic. Since there is a live socket in use, we must wait
|
|
for it or it will be removed from watching when the multi_socket API is
|
|
used. */
|
|
socks[0] = conn->sock[FIRSTSOCKET];
|
|
return GETSOCK_READSOCK(0) | GETSOCK_WRITESOCK(0);
|
|
}
|
|
|
|
/* returns bitmapped flags for this handle and its sockets. The 'socks[]'
|
|
array contains MAX_SOCKSPEREASYHANDLE entries. */
|
|
static int multi_getsock(struct Curl_easy *data,
|
|
curl_socket_t *socks)
|
|
{
|
|
/* The no connection case can happen when this is called from
|
|
curl_multi_remove_handle() => singlesocket() => multi_getsock().
|
|
*/
|
|
if(!data->conn)
|
|
return 0;
|
|
|
|
if(data->mstate > CURLM_STATE_CONNECT &&
|
|
data->mstate < CURLM_STATE_COMPLETED) {
|
|
/* Set up ownership correctly */
|
|
data->conn->data = data;
|
|
}
|
|
|
|
switch(data->mstate) {
|
|
default:
|
|
return 0;
|
|
|
|
case CURLM_STATE_WAITRESOLVE:
|
|
return Curl_resolv_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_PROTOCONNECT:
|
|
case CURLM_STATE_SENDPROTOCONNECT:
|
|
return protocol_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_DO:
|
|
case CURLM_STATE_DOING:
|
|
return doing_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_WAITPROXYCONNECT:
|
|
return waitproxyconnect_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_WAITCONNECT:
|
|
return waitconnect_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_DO_MORE:
|
|
return domore_getsock(data->conn, socks);
|
|
|
|
case CURLM_STATE_DO_DONE: /* since is set after DO is completed, we switch
|
|
to waiting for the same as the *PERFORM
|
|
states */
|
|
case CURLM_STATE_PERFORM:
|
|
return Curl_single_getsock(data->conn, socks);
|
|
}
|
|
|
|
}
|
|
|
|
CURLMcode curl_multi_fdset(struct Curl_multi *multi,
|
|
fd_set *read_fd_set, fd_set *write_fd_set,
|
|
fd_set *exc_fd_set, int *max_fd)
|
|
{
|
|
/* Scan through all the easy handles to get the file descriptors set.
|
|
Some easy handles may not have connected to the remote host yet,
|
|
and then we must make sure that is done. */
|
|
struct Curl_easy *data;
|
|
int this_max_fd = -1;
|
|
curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
|
|
int i;
|
|
(void)exc_fd_set; /* not used */
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
data = multi->easyp;
|
|
while(data) {
|
|
int bitmap = multi_getsock(data, sockbunch);
|
|
|
|
for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
|
|
if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) {
|
|
FD_SET(sockbunch[i], read_fd_set);
|
|
s = sockbunch[i];
|
|
}
|
|
if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) {
|
|
FD_SET(sockbunch[i], write_fd_set);
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD)
|
|
/* this socket is unused, break out of loop */
|
|
break;
|
|
if((int)s > this_max_fd)
|
|
this_max_fd = (int)s;
|
|
}
|
|
|
|
data = data->next; /* check next handle */
|
|
}
|
|
|
|
*max_fd = this_max_fd;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
#define NUM_POLLS_ON_STACK 10
|
|
|
|
static CURLMcode Curl_multi_wait(struct Curl_multi *multi,
|
|
struct curl_waitfd extra_fds[],
|
|
unsigned int extra_nfds,
|
|
int timeout_ms,
|
|
int *ret,
|
|
bool extrawait, /* when no socket, wait */
|
|
bool use_wakeup)
|
|
{
|
|
struct Curl_easy *data;
|
|
curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
|
|
int bitmap;
|
|
unsigned int i;
|
|
unsigned int nfds = 0;
|
|
unsigned int curlfds;
|
|
long timeout_internal;
|
|
int retcode = 0;
|
|
#ifndef USE_WINSOCK
|
|
struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK];
|
|
struct pollfd *ufds = &a_few_on_stack[0];
|
|
bool ufds_malloc = FALSE;
|
|
#else
|
|
struct pollfd pre_poll;
|
|
WSANETWORKEVENTS wsa_events;
|
|
DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT);
|
|
#endif
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
if(timeout_ms < 0)
|
|
return CURLM_BAD_FUNCTION_ARGUMENT;
|
|
|
|
/* Count up how many fds we have from the multi handle */
|
|
data = multi->easyp;
|
|
while(data) {
|
|
bitmap = multi_getsock(data, sockbunch);
|
|
|
|
for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
|
|
if(bitmap & GETSOCK_READSOCK(i)) {
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(bitmap & GETSOCK_WRITESOCK(i)) {
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
data = data->next; /* check next handle */
|
|
}
|
|
|
|
/* If the internally desired timeout is actually shorter than requested from
|
|
the outside, then use the shorter time! But only if the internal timer
|
|
is actually larger than -1! */
|
|
(void)multi_timeout(multi, &timeout_internal);
|
|
if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms))
|
|
timeout_ms = (int)timeout_internal;
|
|
|
|
curlfds = nfds; /* number of internal file descriptors */
|
|
nfds += extra_nfds; /* add the externally provided ones */
|
|
|
|
#ifdef ENABLE_WAKEUP
|
|
#ifdef USE_WINSOCK
|
|
if(use_wakeup) {
|
|
#else
|
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
|
#endif
|
|
++nfds;
|
|
}
|
|
#endif
|
|
|
|
#ifndef USE_WINSOCK
|
|
if(nfds > NUM_POLLS_ON_STACK) {
|
|
/* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes
|
|
big, so at 2^29 sockets this value might wrap. When a process gets
|
|
the capability to actually handle over 500 million sockets this
|
|
calculation needs a integer overflow check. */
|
|
ufds = malloc(nfds * sizeof(struct pollfd));
|
|
if(!ufds)
|
|
return CURLM_OUT_OF_MEMORY;
|
|
ufds_malloc = TRUE;
|
|
}
|
|
|
|
nfds = 0;
|
|
#endif
|
|
|
|
/* only do the second loop if we found descriptors in the first stage run
|
|
above */
|
|
|
|
if(curlfds) {
|
|
/* Add the curl handles to our pollfds first */
|
|
data = multi->easyp;
|
|
while(data) {
|
|
bitmap = multi_getsock(data, sockbunch);
|
|
|
|
for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
#ifdef USE_WINSOCK
|
|
long mask = 0;
|
|
#endif
|
|
if(bitmap & GETSOCK_READSOCK(i)) {
|
|
#ifdef USE_WINSOCK
|
|
if(timeout_ms && SOCKET_READABLE(sockbunch[i], 0) > 0)
|
|
timeout_ms = 0;
|
|
mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
|
|
#else
|
|
ufds[nfds].fd = sockbunch[i];
|
|
ufds[nfds].events = POLLIN;
|
|
++nfds;
|
|
#endif
|
|
s = sockbunch[i];
|
|
}
|
|
if(bitmap & GETSOCK_WRITESOCK(i)) {
|
|
#ifdef USE_WINSOCK
|
|
if(timeout_ms && SOCKET_WRITABLE(sockbunch[i], 0) > 0)
|
|
timeout_ms = 0;
|
|
mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
|
|
#else
|
|
ufds[nfds].fd = sockbunch[i];
|
|
ufds[nfds].events = POLLOUT;
|
|
++nfds;
|
|
#endif
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD) {
|
|
break;
|
|
}
|
|
#ifdef USE_WINSOCK
|
|
if(WSAEventSelect(s, multi->wsa_event, mask) != 0)
|
|
return CURLM_INTERNAL_ERROR;
|
|
#endif
|
|
}
|
|
|
|
data = data->next; /* check next handle */
|
|
}
|
|
}
|
|
|
|
/* Add external file descriptions from poll-like struct curl_waitfd */
|
|
for(i = 0; i < extra_nfds; i++) {
|
|
#ifdef USE_WINSOCK
|
|
long mask = 0;
|
|
extra_fds[i].revents = 0;
|
|
pre_poll.fd = extra_fds[i].fd;
|
|
pre_poll.events = 0;
|
|
pre_poll.revents = 0;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLIN) {
|
|
mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
|
|
pre_poll.events |= POLLIN;
|
|
}
|
|
if(extra_fds[i].events & CURL_WAIT_POLLPRI) {
|
|
mask |= FD_OOB;
|
|
pre_poll.events |= POLLPRI;
|
|
}
|
|
if(extra_fds[i].events & CURL_WAIT_POLLOUT) {
|
|
mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
|
|
pre_poll.events |= POLLOUT;
|
|
}
|
|
if(Curl_poll(&pre_poll, 1, 0) > 0) {
|
|
if(pre_poll.revents & POLLIN)
|
|
extra_fds[i].revents |= CURL_WAIT_POLLIN;
|
|
if(pre_poll.revents & POLLPRI)
|
|
extra_fds[i].revents |= CURL_WAIT_POLLPRI;
|
|
if(pre_poll.revents & POLLOUT)
|
|
extra_fds[i].revents |= CURL_WAIT_POLLOUT;
|
|
if(extra_fds[i].revents)
|
|
timeout_ms = 0;
|
|
}
|
|
if(WSAEventSelect(extra_fds[i].fd, multi->wsa_event, mask) != 0)
|
|
return CURLM_INTERNAL_ERROR;
|
|
#else
|
|
ufds[nfds].fd = extra_fds[i].fd;
|
|
ufds[nfds].events = 0;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLIN)
|
|
ufds[nfds].events |= POLLIN;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLPRI)
|
|
ufds[nfds].events |= POLLPRI;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLOUT)
|
|
ufds[nfds].events |= POLLOUT;
|
|
++nfds;
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENABLE_WAKEUP
|
|
#ifndef USE_WINSOCK
|
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
|
ufds[nfds].fd = multi->wakeup_pair[0];
|
|
ufds[nfds].events = POLLIN;
|
|
++nfds;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
if(nfds) {
|
|
/* wait... */
|
|
#ifdef USE_WINSOCK
|
|
WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, timeout_ms, FALSE);
|
|
#else
|
|
int pollrc = Curl_poll(ufds, nfds, timeout_ms);
|
|
#endif
|
|
|
|
#ifdef USE_WINSOCK
|
|
/* With Winsock, we have to run this unconditionally to call
|
|
WSAEventSelect(fd, event, 0) on all the sockets */
|
|
{
|
|
retcode = 0;
|
|
#else
|
|
if(pollrc > 0) {
|
|
retcode = pollrc;
|
|
#endif
|
|
/* copy revents results from the poll to the curl_multi_wait poll
|
|
struct, the bit values of the actual underlying poll() implementation
|
|
may not be the same as the ones in the public libcurl API! */
|
|
for(i = 0; i < extra_nfds; i++) {
|
|
unsigned short mask = 0;
|
|
#ifdef USE_WINSOCK
|
|
wsa_events.lNetworkEvents = 0;
|
|
mask = extra_fds[i].revents;
|
|
if(WSAEnumNetworkEvents(extra_fds[i].fd, multi->wsa_event,
|
|
&wsa_events) == 0) {
|
|
if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE))
|
|
mask |= CURL_WAIT_POLLIN;
|
|
if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE))
|
|
mask |= CURL_WAIT_POLLOUT;
|
|
if(wsa_events.lNetworkEvents & FD_OOB)
|
|
mask |= CURL_WAIT_POLLPRI;
|
|
if(ret && wsa_events.lNetworkEvents != 0)
|
|
retcode++;
|
|
}
|
|
WSAEventSelect(extra_fds[i].fd, multi->wsa_event, 0);
|
|
#else
|
|
unsigned r = ufds[curlfds + i].revents;
|
|
|
|
if(r & POLLIN)
|
|
mask |= CURL_WAIT_POLLIN;
|
|
if(r & POLLOUT)
|
|
mask |= CURL_WAIT_POLLOUT;
|
|
if(r & POLLPRI)
|
|
mask |= CURL_WAIT_POLLPRI;
|
|
#endif
|
|
extra_fds[i].revents = mask;
|
|
}
|
|
|
|
#ifdef USE_WINSOCK
|
|
/* Count up all our own sockets that had activity,
|
|
and remove them from the event. */
|
|
if(curlfds) {
|
|
data = multi->easyp;
|
|
while(data) {
|
|
bitmap = multi_getsock(data, sockbunch);
|
|
|
|
for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) {
|
|
if(bitmap & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))) {
|
|
wsa_events.lNetworkEvents = 0;
|
|
if(WSAEnumNetworkEvents(sockbunch[i], multi->wsa_event,
|
|
&wsa_events) == 0) {
|
|
if(ret && wsa_events.lNetworkEvents != 0)
|
|
retcode++;
|
|
}
|
|
if(ret && !timeout_ms && wsa_events.lNetworkEvents == 0) {
|
|
if((bitmap & GETSOCK_READSOCK(i)) &&
|
|
SOCKET_READABLE(sockbunch[i], 0) > 0)
|
|
retcode++;
|
|
else if((bitmap & GETSOCK_WRITESOCK(i)) &&
|
|
SOCKET_WRITABLE(sockbunch[i], 0) > 0)
|
|
retcode++;
|
|
}
|
|
WSAEventSelect(sockbunch[i], multi->wsa_event, 0);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
data = data->next;
|
|
}
|
|
}
|
|
|
|
WSAResetEvent(multi->wsa_event);
|
|
#else
|
|
#ifdef ENABLE_WAKEUP
|
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
|
if(ufds[curlfds + extra_nfds].revents & POLLIN) {
|
|
char buf[64];
|
|
ssize_t nread;
|
|
while(1) {
|
|
/* the reading socket is non-blocking, try to read
|
|
data from it until it receives an error (except EINTR).
|
|
In normal cases it will get EAGAIN or EWOULDBLOCK
|
|
when there is no more data, breaking the loop. */
|
|
nread = sread(multi->wakeup_pair[0], buf, sizeof(buf));
|
|
if(nread <= 0) {
|
|
if(nread < 0 && EINTR == SOCKERRNO)
|
|
continue;
|
|
break;
|
|
}
|
|
}
|
|
/* do not count the wakeup socket into the returned value */
|
|
retcode--;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifndef USE_WINSOCK
|
|
if(ufds_malloc)
|
|
free(ufds);
|
|
#endif
|
|
if(ret)
|
|
*ret = retcode;
|
|
if(!extrawait || nfds)
|
|
/* if any socket was checked */
|
|
;
|
|
else {
|
|
long sleep_ms = 0;
|
|
|
|
/* Avoid busy-looping when there's nothing particular to wait for */
|
|
if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) {
|
|
if(sleep_ms > timeout_ms)
|
|
sleep_ms = timeout_ms;
|
|
/* when there are no easy handles in the multi, this holds a -1
|
|
timeout */
|
|
else if(sleep_ms < 0)
|
|
sleep_ms = timeout_ms;
|
|
Curl_wait_ms(sleep_ms);
|
|
}
|
|
}
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
CURLMcode curl_multi_wait(struct Curl_multi *multi,
|
|
struct curl_waitfd extra_fds[],
|
|
unsigned int extra_nfds,
|
|
int timeout_ms,
|
|
int *ret)
|
|
{
|
|
return Curl_multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE,
|
|
FALSE);
|
|
}
|
|
|
|
CURLMcode curl_multi_poll(struct Curl_multi *multi,
|
|
struct curl_waitfd extra_fds[],
|
|
unsigned int extra_nfds,
|
|
int timeout_ms,
|
|
int *ret)
|
|
{
|
|
return Curl_multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE,
|
|
TRUE);
|
|
}
|
|
|
|
CURLMcode curl_multi_wakeup(struct Curl_multi *multi)
|
|
{
|
|
/* this function is usually called from another thread,
|
|
it has to be careful only to access parts of the
|
|
Curl_multi struct that are constant */
|
|
|
|
/* GOOD_MULTI_HANDLE can be safely called */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
#ifdef ENABLE_WAKEUP
|
|
#ifdef USE_WINSOCK
|
|
if(WSASetEvent(multi->wsa_event))
|
|
return CURLM_OK;
|
|
#else
|
|
/* the wakeup_pair variable is only written during init and cleanup,
|
|
making it safe to access from another thread after the init part
|
|
and before cleanup */
|
|
if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) {
|
|
char buf[1];
|
|
buf[0] = 1;
|
|
while(1) {
|
|
/* swrite() is not thread-safe in general, because concurrent calls
|
|
can have their messages interleaved, but in this case the content
|
|
of the messages does not matter, which makes it ok to call.
|
|
|
|
The write socket is set to non-blocking, this way this function
|
|
cannot block, making it safe to call even from the same thread
|
|
that will call Curl_multi_wait(). If swrite() returns that it
|
|
would block, it's considered successful because it means that
|
|
previous calls to this function will wake up the poll(). */
|
|
if(swrite(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) {
|
|
int err = SOCKERRNO;
|
|
int return_success;
|
|
#ifdef USE_WINSOCK
|
|
return_success = WSAEWOULDBLOCK == err;
|
|
#else
|
|
if(EINTR == err)
|
|
continue;
|
|
return_success = EWOULDBLOCK == err || EAGAIN == err;
|
|
#endif
|
|
if(!return_success)
|
|
return CURLM_WAKEUP_FAILURE;
|
|
}
|
|
return CURLM_OK;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
return CURLM_WAKEUP_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* multi_ischanged() is called
|
|
*
|
|
* Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND
|
|
* => CONNECT action.
|
|
*
|
|
* Set 'clear' to TRUE to have it also clear the state variable.
|
|
*/
|
|
static bool multi_ischanged(struct Curl_multi *multi, bool clear)
|
|
{
|
|
bool retval = multi->recheckstate;
|
|
if(clear)
|
|
multi->recheckstate = FALSE;
|
|
return retval;
|
|
}
|
|
|
|
CURLMcode Curl_multi_add_perform(struct Curl_multi *multi,
|
|
struct Curl_easy *data,
|
|
struct connectdata *conn)
|
|
{
|
|
CURLMcode rc;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
rc = curl_multi_add_handle(multi, data);
|
|
if(!rc) {
|
|
struct SingleRequest *k = &data->req;
|
|
|
|
/* pass in NULL for 'conn' here since we don't want to init the
|
|
connection, only this transfer */
|
|
Curl_init_do(data, NULL);
|
|
|
|
/* take this handle to the perform state right away */
|
|
multistate(data, CURLM_STATE_PERFORM);
|
|
Curl_attach_connnection(data, conn);
|
|
k->keepon |= KEEP_RECV; /* setup to receive! */
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* do_complete is called when the DO actions are complete.
|
|
*
|
|
* We init chunking and trailer bits to their default values here immediately
|
|
* before receiving any header data for the current request.
|
|
*/
|
|
static void do_complete(struct connectdata *conn)
|
|
{
|
|
conn->data->req.chunk = FALSE;
|
|
Curl_pgrsTime(conn->data, TIMER_PRETRANSFER);
|
|
}
|
|
|
|
static CURLcode multi_do(struct Curl_easy *data, bool *done)
|
|
{
|
|
CURLcode result = CURLE_OK;
|
|
struct connectdata *conn = data->conn;
|
|
|
|
DEBUGASSERT(conn);
|
|
DEBUGASSERT(conn->handler);
|
|
DEBUGASSERT(conn->data == data);
|
|
|
|
if(conn->handler->do_it) {
|
|
/* generic protocol-specific function pointer set in curl_connect() */
|
|
result = conn->handler->do_it(conn, done);
|
|
|
|
if(!result && *done)
|
|
/* do_complete must be called after the protocol-specific DO function */
|
|
do_complete(conn);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* multi_do_more() is called during the DO_MORE multi state. It is basically a
|
|
* second stage DO state which (wrongly) was introduced to support FTP's
|
|
* second connection.
|
|
*
|
|
* 'complete' can return 0 for incomplete, 1 for done and -1 for go back to
|
|
* DOING state there's more work to do!
|
|
*/
|
|
|
|
static CURLcode multi_do_more(struct connectdata *conn, int *complete)
|
|
{
|
|
CURLcode result = CURLE_OK;
|
|
|
|
*complete = 0;
|
|
|
|
if(conn->handler->do_more)
|
|
result = conn->handler->do_more(conn, complete);
|
|
|
|
if(!result && (*complete == 1))
|
|
/* do_complete must be called after the protocol-specific DO function */
|
|
do_complete(conn);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We are doing protocol-specific connecting and this is being called over and
|
|
* over from the multi interface until the connection phase is done on
|
|
* protocol layer.
|
|
*/
|
|
|
|
static CURLcode protocol_connecting(struct connectdata *conn,
|
|
bool *done)
|
|
{
|
|
CURLcode result = CURLE_OK;
|
|
|
|
if(conn && conn->handler->connecting) {
|
|
*done = FALSE;
|
|
result = conn->handler->connecting(conn, done);
|
|
}
|
|
else
|
|
*done = TRUE;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We are DOING this is being called over and over from the multi interface
|
|
* until the DOING phase is done on protocol layer.
|
|
*/
|
|
|
|
static CURLcode protocol_doing(struct connectdata *conn, bool *done)
|
|
{
|
|
CURLcode result = CURLE_OK;
|
|
|
|
if(conn && conn->handler->doing) {
|
|
*done = FALSE;
|
|
result = conn->handler->doing(conn, done);
|
|
}
|
|
else
|
|
*done = TRUE;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We have discovered that the TCP connection has been successful, we can now
|
|
* proceed with some action.
|
|
*
|
|
*/
|
|
static CURLcode protocol_connect(struct connectdata *conn,
|
|
bool *protocol_done)
|
|
{
|
|
CURLcode result = CURLE_OK;
|
|
|
|
DEBUGASSERT(conn);
|
|
DEBUGASSERT(protocol_done);
|
|
|
|
*protocol_done = FALSE;
|
|
|
|
if(conn->bits.tcpconnect[FIRSTSOCKET] && conn->bits.protoconnstart) {
|
|
/* We already are connected, get back. This may happen when the connect
|
|
worked fine in the first call, like when we connect to a local server
|
|
or proxy. Note that we don't know if the protocol is actually done.
|
|
|
|
Unless this protocol doesn't have any protocol-connect callback, as
|
|
then we know we're done. */
|
|
if(!conn->handler->connecting)
|
|
*protocol_done = TRUE;
|
|
|
|
return CURLE_OK;
|
|
}
|
|
|
|
if(!conn->bits.protoconnstart) {
|
|
#ifndef CURL_DISABLE_PROXY
|
|
result = Curl_proxy_connect(conn, FIRSTSOCKET);
|
|
if(result)
|
|
return result;
|
|
|
|
if(CONNECT_FIRSTSOCKET_PROXY_SSL())
|
|
/* wait for HTTPS proxy SSL initialization to complete */
|
|
return CURLE_OK;
|
|
|
|
if(conn->bits.tunnel_proxy && conn->bits.httpproxy &&
|
|
Curl_connect_ongoing(conn))
|
|
/* when using an HTTP tunnel proxy, await complete tunnel establishment
|
|
before proceeding further. Return CURLE_OK so we'll be called again */
|
|
return CURLE_OK;
|
|
#endif
|
|
if(conn->handler->connect_it) {
|
|
/* is there a protocol-specific connect() procedure? */
|
|
|
|
/* Call the protocol-specific connect function */
|
|
result = conn->handler->connect_it(conn, protocol_done);
|
|
}
|
|
else
|
|
*protocol_done = TRUE;
|
|
|
|
/* it has started, possibly even completed but that knowledge isn't stored
|
|
in this bit! */
|
|
if(!result)
|
|
conn->bits.protoconnstart = TRUE;
|
|
}
|
|
|
|
return result; /* pass back status */
|
|
}
|
|
|
|
/*
|
|
* Curl_preconnect() is called immediately before a connect starts. When a
|
|
* redirect is followed, this is then called multiple times during a single
|
|
* transfer.
|
|
*/
|
|
CURLcode Curl_preconnect(struct Curl_easy *data)
|
|
{
|
|
if(!data->state.buffer) {
|
|
data->state.buffer = malloc(data->set.buffer_size + 1);
|
|
if(!data->state.buffer)
|
|
return CURLE_OUT_OF_MEMORY;
|
|
}
|
|
return CURLE_OK;
|
|
}
|
|
|
|
|
|
static CURLMcode multi_runsingle(struct Curl_multi *multi,
|
|
struct curltime *nowp,
|
|
struct Curl_easy *data)
|
|
{
|
|
struct Curl_message *msg = NULL;
|
|
bool connected;
|
|
bool async;
|
|
bool protocol_connected = FALSE;
|
|
bool dophase_done = FALSE;
|
|
bool done = FALSE;
|
|
CURLMcode rc;
|
|
CURLcode result = CURLE_OK;
|
|
timediff_t timeout_ms;
|
|
timediff_t recv_timeout_ms;
|
|
timediff_t send_timeout_ms;
|
|
int control;
|
|
|
|
if(!GOOD_EASY_HANDLE(data))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
do {
|
|
/* A "stream" here is a logical stream if the protocol can handle that
|
|
(HTTP/2), or the full connection for older protocols */
|
|
bool stream_error = FALSE;
|
|
rc = CURLM_OK;
|
|
|
|
if(multi_ischanged(multi, TRUE)) {
|
|
DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue!\n"));
|
|
process_pending_handles(multi); /* multiplexed */
|
|
}
|
|
|
|
if(data->conn && data->mstate > CURLM_STATE_CONNECT &&
|
|
data->mstate < CURLM_STATE_COMPLETED) {
|
|
/* Make sure we set the connection's current owner */
|
|
data->conn->data = data;
|
|
}
|
|
|
|
if(data->conn &&
|
|
(data->mstate >= CURLM_STATE_CONNECT) &&
|
|
(data->mstate < CURLM_STATE_COMPLETED)) {
|
|
/* we need to wait for the connect state as only then is the start time
|
|
stored, but we must not check already completed handles */
|
|
timeout_ms = Curl_timeleft(data, nowp,
|
|
(data->mstate <= CURLM_STATE_DO)?
|
|
TRUE:FALSE);
|
|
|
|
if(timeout_ms < 0) {
|
|
/* Handle timed out */
|
|
if(data->mstate == CURLM_STATE_WAITRESOLVE)
|
|
failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T
|
|
" milliseconds",
|
|
Curl_timediff(*nowp, data->progress.t_startsingle));
|
|
else if(data->mstate == CURLM_STATE_WAITCONNECT)
|
|
failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T
|
|
" milliseconds",
|
|
Curl_timediff(*nowp, data->progress.t_startsingle));
|
|
else {
|
|
struct SingleRequest *k = &data->req;
|
|
if(k->size != -1) {
|
|
failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
|
|
" milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %"
|
|
CURL_FORMAT_CURL_OFF_T " bytes received",
|
|
Curl_timediff(*nowp, data->progress.t_startsingle),
|
|
k->bytecount, k->size);
|
|
}
|
|
else {
|
|
failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
|
|
" milliseconds with %" CURL_FORMAT_CURL_OFF_T
|
|
" bytes received",
|
|
Curl_timediff(*nowp, data->progress.t_startsingle),
|
|
k->bytecount);
|
|
}
|
|
}
|
|
|
|
/* Force connection closed if the connection has indeed been used */
|
|
if(data->mstate > CURLM_STATE_DO) {
|
|
streamclose(data->conn, "Disconnected with pending data");
|
|
stream_error = TRUE;
|
|
}
|
|
result = CURLE_OPERATION_TIMEDOUT;
|
|
(void)multi_done(data, result, TRUE);
|
|
/* Skip the statemachine and go directly to error handling section. */
|
|
goto statemachine_end;
|
|
}
|
|
}
|
|
|
|
switch(data->mstate) {
|
|
case CURLM_STATE_INIT:
|
|
/* init this transfer. */
|
|
result = Curl_pretransfer(data);
|
|
|
|
if(!result) {
|
|
/* after init, go CONNECT */
|
|
multistate(data, CURLM_STATE_CONNECT);
|
|
*nowp = Curl_pgrsTime(data, TIMER_STARTOP);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_CONNECT_PEND:
|
|
/* We will stay here until there is a connection available. Then
|
|
we try again in the CURLM_STATE_CONNECT state. */
|
|
break;
|
|
|
|
case CURLM_STATE_CONNECT:
|
|
/* Connect. We want to get a connection identifier filled in. */
|
|
/* init this transfer. */
|
|
result = Curl_preconnect(data);
|
|
if(result)
|
|
break;
|
|
|
|
*nowp = Curl_pgrsTime(data, TIMER_STARTSINGLE);
|
|
if(data->set.timeout)
|
|
Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT);
|
|
|
|
if(data->set.connecttimeout)
|
|
Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT);
|
|
|
|
result = Curl_connect(data, &async, &protocol_connected);
|
|
if(CURLE_NO_CONNECTION_AVAILABLE == result) {
|
|
/* There was no connection available. We will go to the pending
|
|
state and wait for an available connection. */
|
|
multistate(data, CURLM_STATE_CONNECT_PEND);
|
|
|
|
/* add this handle to the list of connect-pending handles */
|
|
Curl_llist_insert_next(&multi->pending, multi->pending.tail, data,
|
|
&data->connect_queue);
|
|
result = CURLE_OK;
|
|
break;
|
|
}
|
|
else if(data->state.previouslypending) {
|
|
/* this transfer comes from the pending queue so try move another */
|
|
infof(data, "Transfer was pending, now try another\n");
|
|
process_pending_handles(data->multi);
|
|
}
|
|
|
|
if(!result) {
|
|
if(async)
|
|
/* We're now waiting for an asynchronous name lookup */
|
|
multistate(data, CURLM_STATE_WAITRESOLVE);
|
|
else {
|
|
/* after the connect has been sent off, go WAITCONNECT unless the
|
|
protocol connect is already done and we can go directly to
|
|
WAITDO or DO! */
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
|
|
if(protocol_connected)
|
|
multistate(data, CURLM_STATE_DO);
|
|
else {
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(Curl_connect_ongoing(data->conn))
|
|
multistate(data, CURLM_STATE_WAITPROXYCONNECT);
|
|
else
|
|
#endif
|
|
multistate(data, CURLM_STATE_WAITCONNECT);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_WAITRESOLVE:
|
|
/* awaiting an asynch name resolve to complete */
|
|
{
|
|
struct Curl_dns_entry *dns = NULL;
|
|
struct connectdata *conn = data->conn;
|
|
const char *hostname;
|
|
|
|
DEBUGASSERT(conn);
|
|
#ifndef CURL_DISABLE_PROXY
|
|
if(conn->bits.httpproxy)
|
|
hostname = conn->http_proxy.host.name;
|
|
else
|
|
#endif
|
|
if(conn->bits.conn_to_host)
|
|
hostname = conn->conn_to_host.name;
|
|
else
|
|
hostname = conn->host.name;
|
|
|
|
/* check if we have the name resolved by now */
|
|
dns = Curl_fetch_addr(conn, hostname, (int)conn->port);
|
|
|
|
if(dns) {
|
|
#ifdef CURLRES_ASYNCH
|
|
conn->async.dns = dns;
|
|
conn->async.done = TRUE;
|
|
#endif
|
|
result = CURLE_OK;
|
|
infof(data, "Hostname '%s' was found in DNS cache\n", hostname);
|
|
}
|
|
|
|
if(!dns)
|
|
result = Curl_resolv_check(data->conn, &dns);
|
|
|
|
/* Update sockets here, because the socket(s) may have been
|
|
closed and the application thus needs to be told, even if it
|
|
is likely that the same socket(s) will again be used further
|
|
down. If the name has not yet been resolved, it is likely
|
|
that new sockets have been opened in an attempt to contact
|
|
another resolver. */
|
|
singlesocket(multi, data);
|
|
|
|
if(dns) {
|
|
/* Perform the next step in the connection phase, and then move on
|
|
to the WAITCONNECT state */
|
|
result = Curl_once_resolved(data->conn, &protocol_connected);
|
|
|
|
if(result)
|
|
/* if Curl_once_resolved() returns failure, the connection struct
|
|
is already freed and gone */
|
|
data->conn = NULL; /* no more connection */
|
|
else {
|
|
/* call again please so that we get the next socket setup */
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
if(protocol_connected)
|
|
multistate(data, CURLM_STATE_DO);
|
|
else {
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(Curl_connect_ongoing(data->conn))
|
|
multistate(data, CURLM_STATE_WAITPROXYCONNECT);
|
|
else
|
|
#endif
|
|
multistate(data, CURLM_STATE_WAITCONNECT);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(result) {
|
|
/* failure detected */
|
|
stream_error = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
#ifndef CURL_DISABLE_HTTP
|
|
case CURLM_STATE_WAITPROXYCONNECT:
|
|
/* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */
|
|
DEBUGASSERT(data->conn);
|
|
result = Curl_http_connect(data->conn, &protocol_connected);
|
|
#ifndef CURL_DISABLE_PROXY
|
|
if(data->conn->bits.proxy_connect_closed) {
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
/* connect back to proxy again */
|
|
result = CURLE_OK;
|
|
multi_done(data, CURLE_OK, FALSE);
|
|
multistate(data, CURLM_STATE_CONNECT);
|
|
}
|
|
else
|
|
#endif
|
|
if(!result) {
|
|
if(
|
|
#ifndef CURL_DISABLE_PROXY
|
|
(data->conn->http_proxy.proxytype != CURLPROXY_HTTPS ||
|
|
data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) &&
|
|
#endif
|
|
Curl_connect_complete(data->conn)) {
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
/* initiate protocol connect phase */
|
|
multistate(data, CURLM_STATE_SENDPROTOCONNECT);
|
|
}
|
|
}
|
|
else
|
|
stream_error = TRUE;
|
|
break;
|
|
#endif
|
|
|
|
case CURLM_STATE_WAITCONNECT:
|
|
/* awaiting a completion of an asynch TCP connect */
|
|
DEBUGASSERT(data->conn);
|
|
result = Curl_is_connected(data->conn, FIRSTSOCKET, &connected);
|
|
if(connected && !result) {
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(
|
|
#ifndef CURL_DISABLE_PROXY
|
|
(data->conn->http_proxy.proxytype == CURLPROXY_HTTPS &&
|
|
!data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) ||
|
|
#endif
|
|
Curl_connect_ongoing(data->conn)) {
|
|
multistate(data, CURLM_STATE_WAITPROXYCONNECT);
|
|
break;
|
|
}
|
|
#endif
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
#ifndef CURL_DISABLE_PROXY
|
|
multistate(data,
|
|
data->conn->bits.tunnel_proxy?
|
|
CURLM_STATE_WAITPROXYCONNECT:
|
|
CURLM_STATE_SENDPROTOCONNECT);
|
|
#else
|
|
multistate(data, CURLM_STATE_SENDPROTOCONNECT);
|
|
#endif
|
|
}
|
|
else if(result) {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, TRUE);
|
|
stream_error = TRUE;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_SENDPROTOCONNECT:
|
|
result = protocol_connect(data->conn, &protocol_connected);
|
|
if(!result && !protocol_connected)
|
|
/* switch to waiting state */
|
|
multistate(data, CURLM_STATE_PROTOCONNECT);
|
|
else if(!result) {
|
|
/* protocol connect has completed, go WAITDO or DO */
|
|
multistate(data, CURLM_STATE_DO);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, TRUE);
|
|
stream_error = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_PROTOCONNECT:
|
|
/* protocol-specific connect phase */
|
|
result = protocol_connecting(data->conn, &protocol_connected);
|
|
if(!result && protocol_connected) {
|
|
/* after the connect has completed, go WAITDO or DO */
|
|
multistate(data, CURLM_STATE_DO);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else if(result) {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, TRUE);
|
|
stream_error = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO:
|
|
if(data->set.connect_only) {
|
|
/* keep connection open for application to use the socket */
|
|
connkeep(data->conn, "CONNECT_ONLY");
|
|
multistate(data, CURLM_STATE_DONE);
|
|
result = CURLE_OK;
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else {
|
|
/* Perform the protocol's DO action */
|
|
result = multi_do(data, &dophase_done);
|
|
|
|
/* When multi_do() returns failure, data->conn might be NULL! */
|
|
|
|
if(!result) {
|
|
if(!dophase_done) {
|
|
#ifndef CURL_DISABLE_FTP
|
|
/* some steps needed for wildcard matching */
|
|
if(data->state.wildcardmatch) {
|
|
struct WildcardData *wc = &data->wildcard;
|
|
if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) {
|
|
/* skip some states if it is important */
|
|
multi_done(data, CURLE_OK, FALSE);
|
|
multistate(data, CURLM_STATE_DONE);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
/* DO was not completed in one function call, we must continue
|
|
DOING... */
|
|
multistate(data, CURLM_STATE_DOING);
|
|
rc = CURLM_OK;
|
|
}
|
|
|
|
/* after DO, go DO_DONE... or DO_MORE */
|
|
else if(data->conn->bits.do_more) {
|
|
/* we're supposed to do more, but we need to sit down, relax
|
|
and wait a little while first */
|
|
multistate(data, CURLM_STATE_DO_MORE);
|
|
rc = CURLM_OK;
|
|
}
|
|
else {
|
|
/* we're done with the DO, now DO_DONE */
|
|
multistate(data, CURLM_STATE_DO_DONE);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
else if((CURLE_SEND_ERROR == result) &&
|
|
data->conn->bits.reuse) {
|
|
/*
|
|
* In this situation, a connection that we were trying to use
|
|
* may have unexpectedly died. If possible, send the connection
|
|
* back to the CONNECT phase so we can try again.
|
|
*/
|
|
char *newurl = NULL;
|
|
followtype follow = FOLLOW_NONE;
|
|
CURLcode drc;
|
|
|
|
drc = Curl_retry_request(data->conn, &newurl);
|
|
if(drc) {
|
|
/* a failure here pretty much implies an out of memory */
|
|
result = drc;
|
|
stream_error = TRUE;
|
|
}
|
|
|
|
Curl_posttransfer(data);
|
|
drc = multi_done(data, result, FALSE);
|
|
|
|
/* When set to retry the connection, we must to go back to
|
|
* the CONNECT state */
|
|
if(newurl) {
|
|
if(!drc || (drc == CURLE_SEND_ERROR)) {
|
|
follow = FOLLOW_RETRY;
|
|
drc = Curl_follow(data, newurl, follow);
|
|
if(!drc) {
|
|
multistate(data, CURLM_STATE_CONNECT);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
result = CURLE_OK;
|
|
}
|
|
else {
|
|
/* Follow failed */
|
|
result = drc;
|
|
}
|
|
}
|
|
else {
|
|
/* done didn't return OK or SEND_ERROR */
|
|
result = drc;
|
|
}
|
|
}
|
|
else {
|
|
/* Have error handler disconnect conn if we can't retry */
|
|
stream_error = TRUE;
|
|
}
|
|
free(newurl);
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
if(data->conn)
|
|
multi_done(data, result, FALSE);
|
|
stream_error = TRUE;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DOING:
|
|
/* we continue DOING until the DO phase is complete */
|
|
DEBUGASSERT(data->conn);
|
|
result = protocol_doing(data->conn, &dophase_done);
|
|
if(!result) {
|
|
if(dophase_done) {
|
|
/* after DO, go DO_DONE or DO_MORE */
|
|
multistate(data, data->conn->bits.do_more?
|
|
CURLM_STATE_DO_MORE:
|
|
CURLM_STATE_DO_DONE);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
} /* dophase_done */
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, FALSE);
|
|
stream_error = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO_MORE:
|
|
/*
|
|
* When we are connected, DO MORE and then go DO_DONE
|
|
*/
|
|
DEBUGASSERT(data->conn);
|
|
result = multi_do_more(data->conn, &control);
|
|
|
|
if(!result) {
|
|
if(control) {
|
|
/* if positive, advance to DO_DONE
|
|
if negative, go back to DOING */
|
|
multistate(data, control == 1?
|
|
CURLM_STATE_DO_DONE:
|
|
CURLM_STATE_DOING);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else
|
|
/* stay in DO_MORE */
|
|
rc = CURLM_OK;
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, FALSE);
|
|
stream_error = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO_DONE:
|
|
DEBUGASSERT(data->conn);
|
|
if(data->conn->bits.multiplex)
|
|
/* Check if we can move pending requests to send pipe */
|
|
process_pending_handles(multi); /* multiplexed */
|
|
|
|
/* Only perform the transfer if there's a good socket to work with.
|
|
Having both BAD is a signal to skip immediately to DONE */
|
|
if((data->conn->sockfd != CURL_SOCKET_BAD) ||
|
|
(data->conn->writesockfd != CURL_SOCKET_BAD))
|
|
multistate(data, CURLM_STATE_PERFORM);
|
|
else {
|
|
#ifndef CURL_DISABLE_FTP
|
|
if(data->state.wildcardmatch &&
|
|
((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) {
|
|
data->wildcard.state = CURLWC_DONE;
|
|
}
|
|
#endif
|
|
multistate(data, CURLM_STATE_DONE);
|
|
}
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
break;
|
|
|
|
case CURLM_STATE_TOOFAST: /* limit-rate exceeded in either direction */
|
|
DEBUGASSERT(data->conn);
|
|
/* if both rates are within spec, resume transfer */
|
|
if(Curl_pgrsUpdate(data->conn))
|
|
result = CURLE_ABORTED_BY_CALLBACK;
|
|
else
|
|
result = Curl_speedcheck(data, *nowp);
|
|
|
|
if(!result) {
|
|
send_timeout_ms = 0;
|
|
if(data->set.max_send_speed > 0)
|
|
send_timeout_ms =
|
|
Curl_pgrsLimitWaitTime(data->progress.uploaded,
|
|
data->progress.ul_limit_size,
|
|
data->set.max_send_speed,
|
|
data->progress.ul_limit_start,
|
|
*nowp);
|
|
|
|
recv_timeout_ms = 0;
|
|
if(data->set.max_recv_speed > 0)
|
|
recv_timeout_ms =
|
|
Curl_pgrsLimitWaitTime(data->progress.downloaded,
|
|
data->progress.dl_limit_size,
|
|
data->set.max_recv_speed,
|
|
data->progress.dl_limit_start,
|
|
*nowp);
|
|
|
|
if(!send_timeout_ms && !recv_timeout_ms) {
|
|
multistate(data, CURLM_STATE_PERFORM);
|
|
Curl_ratelimit(data, *nowp);
|
|
}
|
|
else if(send_timeout_ms >= recv_timeout_ms)
|
|
Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
|
|
else
|
|
Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_PERFORM:
|
|
{
|
|
char *newurl = NULL;
|
|
bool retry = FALSE;
|
|
bool comeback = FALSE;
|
|
DEBUGASSERT(data->state.buffer);
|
|
/* check if over send speed */
|
|
send_timeout_ms = 0;
|
|
if(data->set.max_send_speed > 0)
|
|
send_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.uploaded,
|
|
data->progress.ul_limit_size,
|
|
data->set.max_send_speed,
|
|
data->progress.ul_limit_start,
|
|
*nowp);
|
|
|
|
/* check if over recv speed */
|
|
recv_timeout_ms = 0;
|
|
if(data->set.max_recv_speed > 0)
|
|
recv_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.downloaded,
|
|
data->progress.dl_limit_size,
|
|
data->set.max_recv_speed,
|
|
data->progress.dl_limit_start,
|
|
*nowp);
|
|
|
|
if(send_timeout_ms || recv_timeout_ms) {
|
|
Curl_ratelimit(data, *nowp);
|
|
multistate(data, CURLM_STATE_TOOFAST);
|
|
if(send_timeout_ms >= recv_timeout_ms)
|
|
Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
|
|
else
|
|
Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
|
|
break;
|
|
}
|
|
|
|
/* read/write data if it is ready to do so */
|
|
result = Curl_readwrite(data->conn, data, &done, &comeback);
|
|
|
|
if(done || (result == CURLE_RECV_ERROR)) {
|
|
/* If CURLE_RECV_ERROR happens early enough, we assume it was a race
|
|
* condition and the server closed the re-used connection exactly when
|
|
* we wanted to use it, so figure out if that is indeed the case.
|
|
*/
|
|
CURLcode ret = Curl_retry_request(data->conn, &newurl);
|
|
if(!ret)
|
|
retry = (newurl)?TRUE:FALSE;
|
|
else if(!result)
|
|
result = ret;
|
|
|
|
if(retry) {
|
|
/* if we are to retry, set the result to OK and consider the
|
|
request as done */
|
|
result = CURLE_OK;
|
|
done = TRUE;
|
|
}
|
|
}
|
|
else if((CURLE_HTTP2_STREAM == result) &&
|
|
Curl_h2_http_1_1_error(data->conn)) {
|
|
CURLcode ret = Curl_retry_request(data->conn, &newurl);
|
|
|
|
if(!ret) {
|
|
infof(data, "Downgrades to HTTP/1.1!\n");
|
|
data->set.httpversion = CURL_HTTP_VERSION_1_1;
|
|
/* clear the error message bit too as we ignore the one we got */
|
|
data->state.errorbuf = FALSE;
|
|
if(!newurl)
|
|
/* typically for HTTP_1_1_REQUIRED error on first flight */
|
|
newurl = strdup(data->change.url);
|
|
/* if we are to retry, set the result to OK and consider the request
|
|
as done */
|
|
retry = TRUE;
|
|
result = CURLE_OK;
|
|
done = TRUE;
|
|
}
|
|
else
|
|
result = ret;
|
|
}
|
|
|
|
if(result) {
|
|
/*
|
|
* The transfer phase returned error, we mark the connection to get
|
|
* closed to prevent being re-used. This is because we can't possibly
|
|
* know if the connection is in a good shape or not now. Unless it is
|
|
* a protocol which uses two "channels" like FTP, as then the error
|
|
* happened in the data connection.
|
|
*/
|
|
|
|
if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
|
|
result != CURLE_HTTP2_STREAM)
|
|
streamclose(data->conn, "Transfer returned error");
|
|
|
|
Curl_posttransfer(data);
|
|
multi_done(data, result, TRUE);
|
|
}
|
|
else if(done) {
|
|
followtype follow = FOLLOW_NONE;
|
|
|
|
/* call this even if the readwrite function returned error */
|
|
Curl_posttransfer(data);
|
|
|
|
/* When we follow redirects or is set to retry the connection, we must
|
|
to go back to the CONNECT state */
|
|
if(data->req.newurl || retry) {
|
|
if(!retry) {
|
|
/* if the URL is a follow-location and not just a retried request
|
|
then figure out the URL here */
|
|
free(newurl);
|
|
newurl = data->req.newurl;
|
|
data->req.newurl = NULL;
|
|
follow = FOLLOW_REDIR;
|
|
}
|
|
else
|
|
follow = FOLLOW_RETRY;
|
|
(void)multi_done(data, CURLE_OK, FALSE);
|
|
/* multi_done() might return CURLE_GOT_NOTHING */
|
|
result = Curl_follow(data, newurl, follow);
|
|
if(!result) {
|
|
multistate(data, CURLM_STATE_CONNECT);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
free(newurl);
|
|
}
|
|
else {
|
|
/* after the transfer is done, go DONE */
|
|
|
|
/* but first check to see if we got a location info even though we're
|
|
not following redirects */
|
|
if(data->req.location) {
|
|
free(newurl);
|
|
newurl = data->req.location;
|
|
data->req.location = NULL;
|
|
result = Curl_follow(data, newurl, FOLLOW_FAKE);
|
|
free(newurl);
|
|
if(result) {
|
|
stream_error = TRUE;
|
|
result = multi_done(data, result, TRUE);
|
|
}
|
|
}
|
|
|
|
if(!result) {
|
|
multistate(data, CURLM_STATE_DONE);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
}
|
|
else if(comeback) {
|
|
/* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer
|
|
won't get stuck on this transfer at the expense of other concurrent
|
|
transfers */
|
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
|
rc = CURLM_OK;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CURLM_STATE_DONE:
|
|
/* this state is highly transient, so run another loop after this */
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
|
|
if(data->conn) {
|
|
CURLcode res;
|
|
|
|
if(data->conn->bits.multiplex)
|
|
/* Check if we can move pending requests to connection */
|
|
process_pending_handles(multi); /* multiplexing */
|
|
|
|
/* post-transfer command */
|
|
res = multi_done(data, result, FALSE);
|
|
|
|
/* allow a previously set error code take precedence */
|
|
if(!result)
|
|
result = res;
|
|
|
|
/*
|
|
* If there are other handles on the connection, multi_done won't set
|
|
* conn to NULL. In such a case, curl_multi_remove_handle() can
|
|
* access free'd data, if the connection is free'd and the handle
|
|
* removed before we perform the processing in CURLM_STATE_COMPLETED
|
|
*/
|
|
Curl_detach_connnection(data);
|
|
}
|
|
|
|
#ifndef CURL_DISABLE_FTP
|
|
if(data->state.wildcardmatch) {
|
|
if(data->wildcard.state != CURLWC_DONE) {
|
|
/* if a wildcard is set and we are not ending -> lets start again
|
|
with CURLM_STATE_INIT */
|
|
multistate(data, CURLM_STATE_INIT);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
/* after we have DONE what we're supposed to do, go COMPLETED, and
|
|
it doesn't matter what the multi_done() returned! */
|
|
multistate(data, CURLM_STATE_COMPLETED);
|
|
break;
|
|
|
|
case CURLM_STATE_COMPLETED:
|
|
break;
|
|
|
|
case CURLM_STATE_MSGSENT:
|
|
data->result = result;
|
|
return CURLM_OK; /* do nothing */
|
|
|
|
default:
|
|
return CURLM_INTERNAL_ERROR;
|
|
}
|
|
statemachine_end:
|
|
|
|
if(data->mstate < CURLM_STATE_COMPLETED) {
|
|
if(result) {
|
|
/*
|
|
* If an error was returned, and we aren't in completed state now,
|
|
* then we go to completed and consider this transfer aborted.
|
|
*/
|
|
|
|
/* NOTE: no attempt to disconnect connections must be made
|
|
in the case blocks above - cleanup happens only here */
|
|
|
|
/* Check if we can move pending requests to send pipe */
|
|
process_pending_handles(multi); /* connection */
|
|
|
|
if(data->conn) {
|
|
if(stream_error) {
|
|
/* Don't attempt to send data over a connection that timed out */
|
|
bool dead_connection = result == CURLE_OPERATION_TIMEDOUT;
|
|
struct connectdata *conn = data->conn;
|
|
|
|
/* This is where we make sure that the conn pointer is reset.
|
|
We don't have to do this in every case block above where a
|
|
failure is detected */
|
|
Curl_detach_connnection(data);
|
|
|
|
/* remove connection from cache */
|
|
Curl_conncache_remove_conn(data, conn, TRUE);
|
|
|
|
/* disconnect properly */
|
|
Curl_disconnect(data, conn, dead_connection);
|
|
}
|
|
}
|
|
else if(data->mstate == CURLM_STATE_CONNECT) {
|
|
/* Curl_connect() failed */
|
|
(void)Curl_posttransfer(data);
|
|
}
|
|
|
|
multistate(data, CURLM_STATE_COMPLETED);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
/* if there's still a connection to use, call the progress function */
|
|
else if(data->conn && Curl_pgrsUpdate(data->conn)) {
|
|
/* aborted due to progress callback return code must close the
|
|
connection */
|
|
result = CURLE_ABORTED_BY_CALLBACK;
|
|
streamclose(data->conn, "Aborted by callback");
|
|
|
|
/* if not yet in DONE state, go there, otherwise COMPLETED */
|
|
multistate(data, (data->mstate < CURLM_STATE_DONE)?
|
|
CURLM_STATE_DONE: CURLM_STATE_COMPLETED);
|
|
rc = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
|
|
if(CURLM_STATE_COMPLETED == data->mstate) {
|
|
if(data->set.fmultidone) {
|
|
/* signal via callback instead */
|
|
data->set.fmultidone(data, result);
|
|
}
|
|
else {
|
|
/* now fill in the Curl_message with this info */
|
|
msg = &data->msg;
|
|
|
|
msg->extmsg.msg = CURLMSG_DONE;
|
|
msg->extmsg.easy_handle = data;
|
|
msg->extmsg.data.result = result;
|
|
|
|
rc = multi_addmsg(multi, msg);
|
|
DEBUGASSERT(!data->conn);
|
|
}
|
|
multistate(data, CURLM_STATE_MSGSENT);
|
|
}
|
|
} while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE));
|
|
|
|
data->result = result;
|
|
return rc;
|
|
}
|
|
|
|
|
|
CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles)
|
|
{
|
|
struct Curl_easy *data;
|
|
CURLMcode returncode = CURLM_OK;
|
|
struct Curl_tree *t;
|
|
struct curltime now = Curl_now();
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
data = multi->easyp;
|
|
while(data) {
|
|
CURLMcode result;
|
|
SIGPIPE_VARIABLE(pipe_st);
|
|
|
|
sigpipe_ignore(data, &pipe_st);
|
|
result = multi_runsingle(multi, &now, data);
|
|
sigpipe_restore(&pipe_st);
|
|
|
|
if(result)
|
|
returncode = result;
|
|
|
|
data = data->next; /* operate on next handle */
|
|
}
|
|
|
|
/*
|
|
* Simply remove all expired timers from the splay since handles are dealt
|
|
* with unconditionally by this function and curl_multi_timeout() requires
|
|
* that already passed/handled expire times are removed from the splay.
|
|
*
|
|
* It is important that the 'now' value is set at the entry of this function
|
|
* and not for the current time as it may have ticked a little while since
|
|
* then and then we risk this loop to remove timers that actually have not
|
|
* been handled!
|
|
*/
|
|
do {
|
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
|
if(t)
|
|
/* the removed may have another timeout in queue */
|
|
(void)add_next_timeout(now, multi, t->payload);
|
|
|
|
} while(t);
|
|
|
|
*running_handles = multi->num_alive;
|
|
|
|
if(CURLM_OK >= returncode)
|
|
Curl_update_timer(multi);
|
|
|
|
return returncode;
|
|
}
|
|
|
|
CURLMcode curl_multi_cleanup(struct Curl_multi *multi)
|
|
{
|
|
struct Curl_easy *data;
|
|
struct Curl_easy *nextdata;
|
|
|
|
if(GOOD_MULTI_HANDLE(multi)) {
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
multi->type = 0; /* not good anymore */
|
|
|
|
/* Firsrt remove all remaining easy handles */
|
|
data = multi->easyp;
|
|
while(data) {
|
|
nextdata = data->next;
|
|
if(!data->state.done && data->conn)
|
|
/* if DONE was never called for this handle */
|
|
(void)multi_done(data, CURLE_OK, TRUE);
|
|
if(data->dns.hostcachetype == HCACHE_MULTI) {
|
|
/* clear out the usage of the shared DNS cache */
|
|
Curl_hostcache_clean(data, data->dns.hostcache);
|
|
data->dns.hostcache = NULL;
|
|
data->dns.hostcachetype = HCACHE_NONE;
|
|
}
|
|
|
|
/* Clear the pointer to the connection cache */
|
|
data->state.conn_cache = NULL;
|
|
data->multi = NULL; /* clear the association */
|
|
|
|
#ifdef USE_LIBPSL
|
|
if(data->psl == &multi->psl)
|
|
data->psl = NULL;
|
|
#endif
|
|
|
|
data = nextdata;
|
|
}
|
|
|
|
/* Close all the connections in the connection cache */
|
|
Curl_conncache_close_all_connections(&multi->conn_cache);
|
|
|
|
Curl_hash_destroy(&multi->sockhash);
|
|
Curl_conncache_destroy(&multi->conn_cache);
|
|
Curl_llist_destroy(&multi->msglist, NULL);
|
|
Curl_llist_destroy(&multi->pending, NULL);
|
|
|
|
Curl_hash_destroy(&multi->hostcache);
|
|
Curl_psl_destroy(&multi->psl);
|
|
|
|
#ifdef USE_WINSOCK
|
|
WSACloseEvent(multi->wsa_event);
|
|
#else
|
|
#ifdef ENABLE_WAKEUP
|
|
sclose(multi->wakeup_pair[0]);
|
|
sclose(multi->wakeup_pair[1]);
|
|
#endif
|
|
#endif
|
|
free(multi);
|
|
|
|
return CURLM_OK;
|
|
}
|
|
return CURLM_BAD_HANDLE;
|
|
}
|
|
|
|
/*
|
|
* curl_multi_info_read()
|
|
*
|
|
* This function is the primary way for a multi/multi_socket application to
|
|
* figure out if a transfer has ended. We MUST make this function as fast as
|
|
* possible as it will be polled frequently and we MUST NOT scan any lists in
|
|
* here to figure out things. We must scale fine to thousands of handles and
|
|
* beyond. The current design is fully O(1).
|
|
*/
|
|
|
|
CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue)
|
|
{
|
|
struct Curl_message *msg;
|
|
|
|
*msgs_in_queue = 0; /* default to none */
|
|
|
|
if(GOOD_MULTI_HANDLE(multi) &&
|
|
!multi->in_callback &&
|
|
Curl_llist_count(&multi->msglist)) {
|
|
/* there is one or more messages in the list */
|
|
struct Curl_llist_element *e;
|
|
|
|
/* extract the head of the list to return */
|
|
e = multi->msglist.head;
|
|
|
|
msg = e->ptr;
|
|
|
|
/* remove the extracted entry */
|
|
Curl_llist_remove(&multi->msglist, e, NULL);
|
|
|
|
*msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist));
|
|
|
|
return &msg->extmsg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* singlesocket() checks what sockets we deal with and their "action state"
|
|
* and if we have a different state in any of those sockets from last time we
|
|
* call the callback accordingly.
|
|
*/
|
|
static CURLMcode singlesocket(struct Curl_multi *multi,
|
|
struct Curl_easy *data)
|
|
{
|
|
curl_socket_t socks[MAX_SOCKSPEREASYHANDLE];
|
|
int i;
|
|
struct Curl_sh_entry *entry;
|
|
curl_socket_t s;
|
|
int num;
|
|
unsigned int curraction;
|
|
int actions[MAX_SOCKSPEREASYHANDLE];
|
|
|
|
for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++)
|
|
socks[i] = CURL_SOCKET_BAD;
|
|
|
|
/* Fill in the 'current' struct with the state as it is now: what sockets to
|
|
supervise and for what actions */
|
|
curraction = multi_getsock(data, socks);
|
|
|
|
/* We have 0 .. N sockets already and we get to know about the 0 .. M
|
|
sockets we should have from now on. Detect the differences, remove no
|
|
longer supervised ones and add new ones */
|
|
|
|
/* walk over the sockets we got right now */
|
|
for(i = 0; (i< MAX_SOCKSPEREASYHANDLE) &&
|
|
(curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i)));
|
|
i++) {
|
|
unsigned int action = CURL_POLL_NONE;
|
|
unsigned int prevaction = 0;
|
|
unsigned int comboaction;
|
|
bool sincebefore = FALSE;
|
|
|
|
s = socks[i];
|
|
|
|
/* get it from the hash */
|
|
entry = sh_getentry(&multi->sockhash, s);
|
|
|
|
if(curraction & GETSOCK_READSOCK(i))
|
|
action |= CURL_POLL_IN;
|
|
if(curraction & GETSOCK_WRITESOCK(i))
|
|
action |= CURL_POLL_OUT;
|
|
|
|
actions[i] = action;
|
|
if(entry) {
|
|
/* check if new for this transfer */
|
|
int j;
|
|
for(j = 0; j< data->numsocks; j++) {
|
|
if(s == data->sockets[j]) {
|
|
prevaction = data->actions[j];
|
|
sincebefore = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* this is a socket we didn't have before, add it to the hash! */
|
|
entry = sh_addentry(&multi->sockhash, s);
|
|
if(!entry)
|
|
/* fatal */
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
if(sincebefore && (prevaction != action)) {
|
|
/* Socket was used already, but different action now */
|
|
if(prevaction & CURL_POLL_IN)
|
|
entry->readers--;
|
|
if(prevaction & CURL_POLL_OUT)
|
|
entry->writers--;
|
|
if(action & CURL_POLL_IN)
|
|
entry->readers++;
|
|
if(action & CURL_POLL_OUT)
|
|
entry->writers++;
|
|
}
|
|
else if(!sincebefore) {
|
|
/* a new user */
|
|
entry->users++;
|
|
if(action & CURL_POLL_IN)
|
|
entry->readers++;
|
|
if(action & CURL_POLL_OUT)
|
|
entry->writers++;
|
|
|
|
/* add 'data' to the transfer hash on this socket! */
|
|
if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */
|
|
sizeof(struct Curl_easy *), data))
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
|
|
comboaction = (entry->writers? CURL_POLL_OUT : 0) |
|
|
(entry->readers ? CURL_POLL_IN : 0);
|
|
|
|
/* socket existed before and has the same action set as before */
|
|
if(sincebefore && (entry->action == comboaction))
|
|
/* same, continue */
|
|
continue;
|
|
|
|
if(multi->socket_cb)
|
|
multi->socket_cb(data, s, comboaction, multi->socket_userp,
|
|
entry->socketp);
|
|
|
|
entry->action = comboaction; /* store the current action state */
|
|
}
|
|
|
|
num = i; /* number of sockets */
|
|
|
|
/* when we've walked over all the sockets we should have right now, we must
|
|
make sure to detect sockets that are removed */
|
|
for(i = 0; i< data->numsocks; i++) {
|
|
int j;
|
|
bool stillused = FALSE;
|
|
s = data->sockets[i];
|
|
for(j = 0; j < num; j++) {
|
|
if(s == socks[j]) {
|
|
/* this is still supervised */
|
|
stillused = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
if(stillused)
|
|
continue;
|
|
|
|
entry = sh_getentry(&multi->sockhash, s);
|
|
/* if this is NULL here, the socket has been closed and notified so
|
|
already by Curl_multi_closed() */
|
|
if(entry) {
|
|
int oldactions = data->actions[i];
|
|
/* this socket has been removed. Decrease user count */
|
|
entry->users--;
|
|
if(oldactions & CURL_POLL_OUT)
|
|
entry->writers--;
|
|
if(oldactions & CURL_POLL_IN)
|
|
entry->readers--;
|
|
if(!entry->users) {
|
|
if(multi->socket_cb)
|
|
multi->socket_cb(data, s, CURL_POLL_REMOVE,
|
|
multi->socket_userp,
|
|
entry->socketp);
|
|
sh_delentry(entry, &multi->sockhash, s);
|
|
}
|
|
else {
|
|
/* still users, but remove this handle as a user of this socket */
|
|
if(Curl_hash_delete(&entry->transfers, (char *)&data,
|
|
sizeof(struct Curl_easy *))) {
|
|
DEBUGASSERT(NULL);
|
|
}
|
|
}
|
|
}
|
|
} /* for loop over numsocks */
|
|
|
|
memcpy(data->sockets, socks, num*sizeof(curl_socket_t));
|
|
memcpy(data->actions, actions, num*sizeof(int));
|
|
data->numsocks = num;
|
|
return CURLM_OK;
|
|
}
|
|
|
|
void Curl_updatesocket(struct Curl_easy *data)
|
|
{
|
|
singlesocket(data->multi, data);
|
|
}
|
|
|
|
|
|
/*
|
|
* Curl_multi_closed()
|
|
*
|
|
* Used by the connect code to tell the multi_socket code that one of the
|
|
* sockets we were using is about to be closed. This function will then
|
|
* remove it from the sockethash for this handle to make the multi_socket API
|
|
* behave properly, especially for the case when libcurl will create another
|
|
* socket again and it gets the same file descriptor number.
|
|
*/
|
|
|
|
void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s)
|
|
{
|
|
if(data) {
|
|
/* if there's still an easy handle associated with this connection */
|
|
struct Curl_multi *multi = data->multi;
|
|
if(multi) {
|
|
/* this is set if this connection is part of a handle that is added to
|
|
a multi handle, and only then this is necessary */
|
|
struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
|
|
|
|
if(entry) {
|
|
if(multi->socket_cb)
|
|
multi->socket_cb(data, s, CURL_POLL_REMOVE,
|
|
multi->socket_userp,
|
|
entry->socketp);
|
|
|
|
/* now remove it from the socket hash */
|
|
sh_delentry(entry, &multi->sockhash, s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add_next_timeout()
|
|
*
|
|
* Each Curl_easy has a list of timeouts. The add_next_timeout() is called
|
|
* when it has just been removed from the splay tree because the timeout has
|
|
* expired. This function is then to advance in the list to pick the next
|
|
* timeout to use (skip the already expired ones) and add this node back to
|
|
* the splay tree again.
|
|
*
|
|
* The splay tree only has each sessionhandle as a single node and the nearest
|
|
* timeout is used to sort it on.
|
|
*/
|
|
static CURLMcode add_next_timeout(struct curltime now,
|
|
struct Curl_multi *multi,
|
|
struct Curl_easy *d)
|
|
{
|
|
struct curltime *tv = &d->state.expiretime;
|
|
struct Curl_llist *list = &d->state.timeoutlist;
|
|
struct Curl_llist_element *e;
|
|
struct time_node *node = NULL;
|
|
|
|
/* move over the timeout list for this specific handle and remove all
|
|
timeouts that are now passed tense and store the next pending
|
|
timeout in *tv */
|
|
for(e = list->head; e;) {
|
|
struct Curl_llist_element *n = e->next;
|
|
timediff_t diff;
|
|
node = (struct time_node *)e->ptr;
|
|
diff = Curl_timediff(node->time, now);
|
|
if(diff <= 0)
|
|
/* remove outdated entry */
|
|
Curl_llist_remove(list, e, NULL);
|
|
else
|
|
/* the list is sorted so get out on the first mismatch */
|
|
break;
|
|
e = n;
|
|
}
|
|
e = list->head;
|
|
if(!e) {
|
|
/* clear the expire times within the handles that we remove from the
|
|
splay tree */
|
|
tv->tv_sec = 0;
|
|
tv->tv_usec = 0;
|
|
}
|
|
else {
|
|
/* copy the first entry to 'tv' */
|
|
memcpy(tv, &node->time, sizeof(*tv));
|
|
|
|
/* Insert this node again into the splay. Keep the timer in the list in
|
|
case we need to recompute future timers. */
|
|
multi->timetree = Curl_splayinsert(*tv, multi->timetree,
|
|
&d->state.timenode);
|
|
}
|
|
return CURLM_OK;
|
|
}
|
|
|
|
static CURLMcode multi_socket(struct Curl_multi *multi,
|
|
bool checkall,
|
|
curl_socket_t s,
|
|
int ev_bitmask,
|
|
int *running_handles)
|
|
{
|
|
CURLMcode result = CURLM_OK;
|
|
struct Curl_easy *data = NULL;
|
|
struct Curl_tree *t;
|
|
struct curltime now = Curl_now();
|
|
|
|
if(checkall) {
|
|
/* *perform() deals with running_handles on its own */
|
|
result = curl_multi_perform(multi, running_handles);
|
|
|
|
/* walk through each easy handle and do the socket state change magic
|
|
and callbacks */
|
|
if(result != CURLM_BAD_HANDLE) {
|
|
data = multi->easyp;
|
|
while(data && !result) {
|
|
result = singlesocket(multi, data);
|
|
data = data->next;
|
|
}
|
|
}
|
|
|
|
/* or should we fall-through and do the timer-based stuff? */
|
|
return result;
|
|
}
|
|
if(s != CURL_SOCKET_TIMEOUT) {
|
|
struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
|
|
|
|
if(!entry)
|
|
/* Unmatched socket, we can't act on it but we ignore this fact. In
|
|
real-world tests it has been proved that libevent can in fact give
|
|
the application actions even though the socket was just previously
|
|
asked to get removed, so thus we better survive stray socket actions
|
|
and just move on. */
|
|
;
|
|
else {
|
|
struct Curl_hash_iterator iter;
|
|
struct Curl_hash_element *he;
|
|
|
|
/* the socket can be shared by many transfers, iterate */
|
|
Curl_hash_start_iterate(&entry->transfers, &iter);
|
|
for(he = Curl_hash_next_element(&iter); he;
|
|
he = Curl_hash_next_element(&iter)) {
|
|
data = (struct Curl_easy *)he->ptr;
|
|
DEBUGASSERT(data);
|
|
DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER);
|
|
|
|
if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK))
|
|
/* set socket event bitmask if they're not locked */
|
|
data->conn->cselect_bits = ev_bitmask;
|
|
|
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
|
}
|
|
|
|
/* Now we fall-through and do the timer-based stuff, since we don't want
|
|
to force the user to have to deal with timeouts as long as at least
|
|
one connection in fact has traffic. */
|
|
|
|
data = NULL; /* set data to NULL again to avoid calling
|
|
multi_runsingle() in case there's no need to */
|
|
now = Curl_now(); /* get a newer time since the multi_runsingle() loop
|
|
may have taken some time */
|
|
}
|
|
}
|
|
else {
|
|
/* Asked to run due to time-out. Clear the 'lastcall' variable to force
|
|
Curl_update_timer() to trigger a callback to the app again even if the
|
|
same timeout is still the one to run after this call. That handles the
|
|
case when the application asks libcurl to run the timeout
|
|
prematurely. */
|
|
memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
|
|
}
|
|
|
|
/*
|
|
* The loop following here will go on as long as there are expire-times left
|
|
* to process in the splay and 'data' will be re-assigned for every expired
|
|
* handle we deal with.
|
|
*/
|
|
do {
|
|
/* the first loop lap 'data' can be NULL */
|
|
if(data) {
|
|
SIGPIPE_VARIABLE(pipe_st);
|
|
|
|
sigpipe_ignore(data, &pipe_st);
|
|
result = multi_runsingle(multi, &now, data);
|
|
sigpipe_restore(&pipe_st);
|
|
|
|
if(CURLM_OK >= result) {
|
|
/* get the socket(s) and check if the state has been changed since
|
|
last */
|
|
result = singlesocket(multi, data);
|
|
if(result)
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* Check if there's one (more) expired timer to deal with! This function
|
|
extracts a matching node if there is one */
|
|
|
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
|
if(t) {
|
|
data = t->payload; /* assign this for next loop */
|
|
(void)add_next_timeout(now, multi, t->payload);
|
|
}
|
|
|
|
} while(t);
|
|
|
|
*running_handles = multi->num_alive;
|
|
return result;
|
|
}
|
|
|
|
#undef curl_multi_setopt
|
|
CURLMcode curl_multi_setopt(struct Curl_multi *multi,
|
|
CURLMoption option, ...)
|
|
{
|
|
CURLMcode res = CURLM_OK;
|
|
va_list param;
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
va_start(param, option);
|
|
|
|
switch(option) {
|
|
case CURLMOPT_SOCKETFUNCTION:
|
|
multi->socket_cb = va_arg(param, curl_socket_callback);
|
|
break;
|
|
case CURLMOPT_SOCKETDATA:
|
|
multi->socket_userp = va_arg(param, void *);
|
|
break;
|
|
case CURLMOPT_PUSHFUNCTION:
|
|
multi->push_cb = va_arg(param, curl_push_callback);
|
|
break;
|
|
case CURLMOPT_PUSHDATA:
|
|
multi->push_userp = va_arg(param, void *);
|
|
break;
|
|
case CURLMOPT_PIPELINING:
|
|
multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX;
|
|
break;
|
|
case CURLMOPT_TIMERFUNCTION:
|
|
multi->timer_cb = va_arg(param, curl_multi_timer_callback);
|
|
break;
|
|
case CURLMOPT_TIMERDATA:
|
|
multi->timer_userp = va_arg(param, void *);
|
|
break;
|
|
case CURLMOPT_MAXCONNECTS:
|
|
multi->maxconnects = va_arg(param, long);
|
|
break;
|
|
case CURLMOPT_MAX_HOST_CONNECTIONS:
|
|
multi->max_host_connections = va_arg(param, long);
|
|
break;
|
|
case CURLMOPT_MAX_TOTAL_CONNECTIONS:
|
|
multi->max_total_connections = va_arg(param, long);
|
|
break;
|
|
/* options formerly used for pipelining */
|
|
case CURLMOPT_MAX_PIPELINE_LENGTH:
|
|
break;
|
|
case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE:
|
|
break;
|
|
case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE:
|
|
break;
|
|
case CURLMOPT_PIPELINING_SITE_BL:
|
|
break;
|
|
case CURLMOPT_PIPELINING_SERVER_BL:
|
|
break;
|
|
case CURLMOPT_MAX_CONCURRENT_STREAMS:
|
|
{
|
|
long streams = va_arg(param, long);
|
|
if(streams < 1)
|
|
streams = 100;
|
|
multi->max_concurrent_streams = curlx_sltoui(streams);
|
|
}
|
|
break;
|
|
default:
|
|
res = CURLM_UNKNOWN_OPTION;
|
|
break;
|
|
}
|
|
va_end(param);
|
|
return res;
|
|
}
|
|
|
|
/* we define curl_multi_socket() in the public multi.h header */
|
|
#undef curl_multi_socket
|
|
|
|
CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s,
|
|
int *running_handles)
|
|
{
|
|
CURLMcode result;
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
result = multi_socket(multi, FALSE, s, 0, running_handles);
|
|
if(CURLM_OK >= result)
|
|
Curl_update_timer(multi);
|
|
return result;
|
|
}
|
|
|
|
CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s,
|
|
int ev_bitmask, int *running_handles)
|
|
{
|
|
CURLMcode result;
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles);
|
|
if(CURLM_OK >= result)
|
|
Curl_update_timer(multi);
|
|
return result;
|
|
}
|
|
|
|
CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles)
|
|
{
|
|
CURLMcode result;
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles);
|
|
if(CURLM_OK >= result)
|
|
Curl_update_timer(multi);
|
|
return result;
|
|
}
|
|
|
|
static CURLMcode multi_timeout(struct Curl_multi *multi,
|
|
long *timeout_ms)
|
|
{
|
|
static struct curltime tv_zero = {0, 0};
|
|
|
|
if(multi->timetree) {
|
|
/* we have a tree of expire times */
|
|
struct curltime now = Curl_now();
|
|
|
|
/* splay the lowest to the bottom */
|
|
multi->timetree = Curl_splay(tv_zero, multi->timetree);
|
|
|
|
if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) {
|
|
/* some time left before expiration */
|
|
timediff_t diff = Curl_timediff(multi->timetree->key, now);
|
|
if(diff <= 0)
|
|
/*
|
|
* Since we only provide millisecond resolution on the returned value
|
|
* and the diff might be less than one millisecond here, we don't
|
|
* return zero as that may cause short bursts of busyloops on fast
|
|
* processors while the diff is still present but less than one
|
|
* millisecond! instead we return 1 until the time is ripe.
|
|
*/
|
|
*timeout_ms = 1;
|
|
else
|
|
/* this should be safe even on 64 bit archs, as we don't use that
|
|
overly long timeouts */
|
|
*timeout_ms = (long)diff;
|
|
}
|
|
else
|
|
/* 0 means immediately */
|
|
*timeout_ms = 0;
|
|
}
|
|
else
|
|
*timeout_ms = -1;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
CURLMcode curl_multi_timeout(struct Curl_multi *multi,
|
|
long *timeout_ms)
|
|
{
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
return multi_timeout(multi, timeout_ms);
|
|
}
|
|
|
|
/*
|
|
* Tell the application it should update its timers, if it subscribes to the
|
|
* update timer callback.
|
|
*/
|
|
void Curl_update_timer(struct Curl_multi *multi)
|
|
{
|
|
long timeout_ms;
|
|
|
|
if(!multi->timer_cb)
|
|
return;
|
|
if(multi_timeout(multi, &timeout_ms)) {
|
|
return;
|
|
}
|
|
if(timeout_ms < 0) {
|
|
static const struct curltime none = {0, 0};
|
|
if(Curl_splaycomparekeys(none, multi->timer_lastcall)) {
|
|
multi->timer_lastcall = none;
|
|
/* there's no timeout now but there was one previously, tell the app to
|
|
disable it */
|
|
multi->timer_cb(multi, -1, multi->timer_userp);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* When multi_timeout() is done, multi->timetree points to the node with the
|
|
* timeout we got the (relative) time-out time for. We can thus easily check
|
|
* if this is the same (fixed) time as we got in a previous call and then
|
|
* avoid calling the callback again. */
|
|
if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0)
|
|
return;
|
|
|
|
multi->timer_lastcall = multi->timetree->key;
|
|
|
|
multi->timer_cb(multi, timeout_ms, multi->timer_userp);
|
|
}
|
|
|
|
/*
|
|
* multi_deltimeout()
|
|
*
|
|
* Remove a given timestamp from the list of timeouts.
|
|
*/
|
|
static void
|
|
multi_deltimeout(struct Curl_easy *data, expire_id eid)
|
|
{
|
|
struct Curl_llist_element *e;
|
|
struct Curl_llist *timeoutlist = &data->state.timeoutlist;
|
|
/* find and remove the specific node from the list */
|
|
for(e = timeoutlist->head; e; e = e->next) {
|
|
struct time_node *n = (struct time_node *)e->ptr;
|
|
if(n->eid == eid) {
|
|
Curl_llist_remove(timeoutlist, e, NULL);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* multi_addtimeout()
|
|
*
|
|
* Add a timestamp to the list of timeouts. Keep the list sorted so that head
|
|
* of list is always the timeout nearest in time.
|
|
*
|
|
*/
|
|
static CURLMcode
|
|
multi_addtimeout(struct Curl_easy *data,
|
|
struct curltime *stamp,
|
|
expire_id eid)
|
|
{
|
|
struct Curl_llist_element *e;
|
|
struct time_node *node;
|
|
struct Curl_llist_element *prev = NULL;
|
|
size_t n;
|
|
struct Curl_llist *timeoutlist = &data->state.timeoutlist;
|
|
|
|
node = &data->state.expires[eid];
|
|
|
|
/* copy the timestamp and id */
|
|
memcpy(&node->time, stamp, sizeof(*stamp));
|
|
node->eid = eid; /* also marks it as in use */
|
|
|
|
n = Curl_llist_count(timeoutlist);
|
|
if(n) {
|
|
/* find the correct spot in the list */
|
|
for(e = timeoutlist->head; e; e = e->next) {
|
|
struct time_node *check = (struct time_node *)e->ptr;
|
|
timediff_t diff = Curl_timediff(check->time, node->time);
|
|
if(diff > 0)
|
|
break;
|
|
prev = e;
|
|
}
|
|
|
|
}
|
|
/* else
|
|
this is the first timeout on the list */
|
|
|
|
Curl_llist_insert_next(timeoutlist, prev, node, &node->list);
|
|
return CURLM_OK;
|
|
}
|
|
|
|
/*
|
|
* Curl_expire()
|
|
*
|
|
* given a number of milliseconds from now to use to set the 'act before
|
|
* this'-time for the transfer, to be extracted by curl_multi_timeout()
|
|
*
|
|
* The timeout will be added to a queue of timeouts if it defines a moment in
|
|
* time that is later than the current head of queue.
|
|
*
|
|
* Expire replaces a former timeout using the same id if already set.
|
|
*/
|
|
void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id)
|
|
{
|
|
struct Curl_multi *multi = data->multi;
|
|
struct curltime *nowp = &data->state.expiretime;
|
|
struct curltime set;
|
|
|
|
/* this is only interesting while there is still an associated multi struct
|
|
remaining! */
|
|
if(!multi)
|
|
return;
|
|
|
|
DEBUGASSERT(id < EXPIRE_LAST);
|
|
|
|
set = Curl_now();
|
|
set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */
|
|
set.tv_usec += (unsigned int)(milli%1000)*1000;
|
|
|
|
if(set.tv_usec >= 1000000) {
|
|
set.tv_sec++;
|
|
set.tv_usec -= 1000000;
|
|
}
|
|
|
|
/* Remove any timer with the same id just in case. */
|
|
multi_deltimeout(data, id);
|
|
|
|
/* Add it to the timer list. It must stay in the list until it has expired
|
|
in case we need to recompute the minimum timer later. */
|
|
multi_addtimeout(data, &set, id);
|
|
|
|
if(nowp->tv_sec || nowp->tv_usec) {
|
|
/* This means that the struct is added as a node in the splay tree.
|
|
Compare if the new time is earlier, and only remove-old/add-new if it
|
|
is. */
|
|
timediff_t diff = Curl_timediff(set, *nowp);
|
|
int rc;
|
|
|
|
if(diff > 0) {
|
|
/* The current splay tree entry is sooner than this new expiry time.
|
|
We don't need to update our splay tree entry. */
|
|
return;
|
|
}
|
|
|
|
/* Since this is an updated time, we must remove the previous entry from
|
|
the splay tree first and then re-add the new value */
|
|
rc = Curl_splayremove(multi->timetree, &data->state.timenode,
|
|
&multi->timetree);
|
|
if(rc)
|
|
infof(data, "Internal error removing splay node = %d\n", rc);
|
|
}
|
|
|
|
/* Indicate that we are in the splay tree and insert the new timer expiry
|
|
value since it is our local minimum. */
|
|
*nowp = set;
|
|
data->state.timenode.payload = data;
|
|
multi->timetree = Curl_splayinsert(*nowp, multi->timetree,
|
|
&data->state.timenode);
|
|
}
|
|
|
|
/*
|
|
* Curl_expire_done()
|
|
*
|
|
* Removes the expire timer. Marks it as done.
|
|
*
|
|
*/
|
|
void Curl_expire_done(struct Curl_easy *data, expire_id id)
|
|
{
|
|
/* remove the timer, if there */
|
|
multi_deltimeout(data, id);
|
|
}
|
|
|
|
/*
|
|
* Curl_expire_clear()
|
|
*
|
|
* Clear ALL timeout values for this handle.
|
|
*/
|
|
void Curl_expire_clear(struct Curl_easy *data)
|
|
{
|
|
struct Curl_multi *multi = data->multi;
|
|
struct curltime *nowp = &data->state.expiretime;
|
|
|
|
/* this is only interesting while there is still an associated multi struct
|
|
remaining! */
|
|
if(!multi)
|
|
return;
|
|
|
|
if(nowp->tv_sec || nowp->tv_usec) {
|
|
/* Since this is an cleared time, we must remove the previous entry from
|
|
the splay tree */
|
|
struct Curl_llist *list = &data->state.timeoutlist;
|
|
int rc;
|
|
|
|
rc = Curl_splayremove(multi->timetree, &data->state.timenode,
|
|
&multi->timetree);
|
|
if(rc)
|
|
infof(data, "Internal error clearing splay node = %d\n", rc);
|
|
|
|
/* flush the timeout list too */
|
|
while(list->size > 0) {
|
|
Curl_llist_remove(list, list->tail, NULL);
|
|
}
|
|
|
|
#ifdef DEBUGBUILD
|
|
infof(data, "Expire cleared (transfer %p)\n", data);
|
|
#endif
|
|
nowp->tv_sec = 0;
|
|
nowp->tv_usec = 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s,
|
|
void *hashp)
|
|
{
|
|
struct Curl_sh_entry *there = NULL;
|
|
|
|
if(multi->in_callback)
|
|
return CURLM_RECURSIVE_API_CALL;
|
|
|
|
there = sh_getentry(&multi->sockhash, s);
|
|
|
|
if(!there)
|
|
return CURLM_BAD_SOCKET;
|
|
|
|
there->socketp = hashp;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
size_t Curl_multi_max_host_connections(struct Curl_multi *multi)
|
|
{
|
|
return multi ? multi->max_host_connections : 0;
|
|
}
|
|
|
|
size_t Curl_multi_max_total_connections(struct Curl_multi *multi)
|
|
{
|
|
return multi ? multi->max_total_connections : 0;
|
|
}
|
|
|
|
/*
|
|
* When information about a connection has appeared, call this!
|
|
*/
|
|
|
|
void Curl_multiuse_state(struct connectdata *conn,
|
|
int bundlestate) /* use BUNDLE_* defines */
|
|
{
|
|
DEBUGASSERT(conn);
|
|
DEBUGASSERT(conn->bundle);
|
|
DEBUGASSERT(conn->data);
|
|
DEBUGASSERT(conn->data->multi);
|
|
|
|
conn->bundle->multiuse = bundlestate;
|
|
process_pending_handles(conn->data->multi);
|
|
}
|
|
|
|
static void process_pending_handles(struct Curl_multi *multi)
|
|
{
|
|
struct Curl_llist_element *e = multi->pending.head;
|
|
if(e) {
|
|
struct Curl_easy *data = e->ptr;
|
|
|
|
DEBUGASSERT(data->mstate == CURLM_STATE_CONNECT_PEND);
|
|
|
|
multistate(data, CURLM_STATE_CONNECT);
|
|
|
|
/* Remove this node from the list */
|
|
Curl_llist_remove(&multi->pending, e, NULL);
|
|
|
|
/* Make sure that the handle will be processed soonish. */
|
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
|
|
|
/* mark this as having been in the pending queue */
|
|
data->state.previouslypending = TRUE;
|
|
}
|
|
}
|
|
|
|
void Curl_set_in_callback(struct Curl_easy *data, bool value)
|
|
{
|
|
/* might get called when there is no data pointer! */
|
|
if(data) {
|
|
if(data->multi_easy)
|
|
data->multi_easy->in_callback = value;
|
|
else if(data->multi)
|
|
data->multi->in_callback = value;
|
|
}
|
|
}
|
|
|
|
bool Curl_is_in_callback(struct Curl_easy *easy)
|
|
{
|
|
return ((easy->multi && easy->multi->in_callback) ||
|
|
(easy->multi_easy && easy->multi_easy->in_callback));
|
|
}
|
|
|
|
#ifdef DEBUGBUILD
|
|
void Curl_multi_dump(struct Curl_multi *multi)
|
|
{
|
|
struct Curl_easy *data;
|
|
int i;
|
|
fprintf(stderr, "* Multi status: %d handles, %d alive\n",
|
|
multi->num_easy, multi->num_alive);
|
|
for(data = multi->easyp; data; data = data->next) {
|
|
if(data->mstate < CURLM_STATE_COMPLETED) {
|
|
/* only display handles that are not completed */
|
|
fprintf(stderr, "handle %p, state %s, %d sockets\n",
|
|
(void *)data,
|
|
statename[data->mstate], data->numsocks);
|
|
for(i = 0; i < data->numsocks; i++) {
|
|
curl_socket_t s = data->sockets[i];
|
|
struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
|
|
|
|
fprintf(stderr, "%d ", (int)s);
|
|
if(!entry) {
|
|
fprintf(stderr, "INTERNAL CONFUSION\n");
|
|
continue;
|
|
}
|
|
fprintf(stderr, "[%s %s] ",
|
|
(entry->action&CURL_POLL_IN)?"RECVING":"",
|
|
(entry->action&CURL_POLL_OUT)?"SENDING":"");
|
|
}
|
|
if(data->numsocks)
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi)
|
|
{
|
|
DEBUGASSERT(multi);
|
|
return multi->max_concurrent_streams;
|
|
}
|