/*************************************************************************** * _ _ ____ _ * Project ___| | | | _ \| | * / __| | | | |_) | | * | (__| |_| | _ <| |___ * \___|\___/|_| \_\_____| * * Copyright (C) Daniel Stenberg, , et al. * * This software is licensed as described in the file COPYING, which * you should have received as part of this distribution. The terms * are also available at https://curl.se/docs/copyright.html. * * You may opt to use, copy, modify, merge, publish, distribute and/or sell * copies of the Software, and permit persons to whom the Software is * furnished to do so, under the terms of the COPYING file. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * * SPDX-License-Identifier: curl * ***************************************************************************/ #include "curl_setup.h" #include #include "urldata.h" #include "transfer.h" #include "url.h" #include "cfilters.h" #include "connect.h" #include "progress.h" #include "easyif.h" #include "share.h" #include "psl.h" #include "multiif.h" #include "sendf.h" #include "timeval.h" #include "http.h" #include "select.h" #include "warnless.h" #include "speedcheck.h" #include "conncache.h" #include "multihandle.h" #include "sigpipe.h" #include "vtls/vtls.h" #include "http_proxy.h" #include "http2.h" #include "socketpair.h" #include "socks.h" /* The last 3 #include files should be in this order */ #include "curl_printf.h" #include "curl_memory.h" #include "memdebug.h" /* CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97 to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every CURL handle takes 45-50 K memory, therefore this 3K are not significant. */ #ifndef CURL_SOCKET_HASH_TABLE_SIZE #define CURL_SOCKET_HASH_TABLE_SIZE 911 #endif #ifndef CURL_CONNECTION_HASH_SIZE #define CURL_CONNECTION_HASH_SIZE 97 #endif #ifndef CURL_DNS_HASH_SIZE #define CURL_DNS_HASH_SIZE 71 #endif #define CURL_MULTI_HANDLE 0x000bab1e #ifdef DEBUGBUILD /* On a debug build, we want to fail hard on multi handles that * are not NULL, but no longer have the MAGIC touch. This gives * us early warning on things only discovered by valgrind otherwise. */ #define GOOD_MULTI_HANDLE(x) \ (((x) && (x)->magic == CURL_MULTI_HANDLE)? TRUE: \ (DEBUGASSERT(!(x)), FALSE)) #else #define GOOD_MULTI_HANDLE(x) \ ((x) && (x)->magic == CURL_MULTI_HANDLE) #endif static void move_pending_to_connect(struct Curl_multi *multi, struct Curl_easy *data); static CURLMcode singlesocket(struct Curl_multi *multi, struct Curl_easy *data); static CURLMcode add_next_timeout(struct curltime now, struct Curl_multi *multi, struct Curl_easy *d); static CURLMcode multi_timeout(struct Curl_multi *multi, struct curltime *expire_time, long *timeout_ms); static void process_pending_handles(struct Curl_multi *multi); static void multi_xfer_bufs_free(struct Curl_multi *multi); static void Curl_expire_ex(struct Curl_easy *data, const struct curltime *nowp, timediff_t milli, expire_id id); #ifdef DEBUGBUILD static const char * const multi_statename[]={ "INIT", "PENDING", "SETUP", "CONNECT", "RESOLVING", "CONNECTING", "TUNNELING", "PROTOCONNECT", "PROTOCONNECTING", "DO", "DOING", "DOING_MORE", "DID", "PERFORMING", "RATELIMITING", "DONE", "COMPLETED", "MSGSENT", }; #endif /* function pointer called once when switching TO a state */ typedef void (*init_multistate_func)(struct Curl_easy *data); /* called in DID state, before PERFORMING state */ static void before_perform(struct Curl_easy *data) { data->req.chunk = FALSE; Curl_pgrsTime(data, TIMER_PRETRANSFER); } static void init_completed(struct Curl_easy *data) { /* this is a completed transfer */ /* Important: reset the conn pointer so that we do not point to memory that could be freed anytime */ Curl_detach_connection(data); Curl_expire_clear(data); /* stop all timers */ } /* always use this function to change state, to make debugging easier */ static void mstate(struct Curl_easy *data, CURLMstate state #ifdef DEBUGBUILD , int lineno #endif ) { CURLMstate oldstate = data->mstate; static const init_multistate_func finit[MSTATE_LAST] = { NULL, /* INIT */ NULL, /* PENDING */ NULL, /* SETUP */ Curl_init_CONNECT, /* CONNECT */ NULL, /* RESOLVING */ NULL, /* CONNECTING */ NULL, /* TUNNELING */ NULL, /* PROTOCONNECT */ NULL, /* PROTOCONNECTING */ NULL, /* DO */ NULL, /* DOING */ NULL, /* DOING_MORE */ before_perform, /* DID */ NULL, /* PERFORMING */ NULL, /* RATELIMITING */ NULL, /* DONE */ init_completed, /* COMPLETED */ NULL /* MSGSENT */ }; #if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS) (void) lineno; #endif if(oldstate == state) /* do not bother when the new state is the same as the old state */ return; data->mstate = state; #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) if(data->mstate >= MSTATE_PENDING && data->mstate < MSTATE_COMPLETED) { infof(data, "STATE: %s => %s handle %p; line %d", multi_statename[oldstate], multi_statename[data->mstate], (void *)data, lineno); } #endif if(state == MSTATE_COMPLETED) { /* changing to COMPLETED means there is one less easy handle 'alive' */ DEBUGASSERT(data->multi->num_alive > 0); data->multi->num_alive--; if(!data->multi->num_alive) { /* free the transfer buffer when we have no more active transfers */ multi_xfer_bufs_free(data->multi); } } /* if this state has an init-function, run it */ if(finit[state]) finit[state](data); } #ifndef DEBUGBUILD #define multistate(x,y) mstate(x,y) #else #define multistate(x,y) mstate(x,y, __LINE__) #endif /* * We add one of these structs to the sockhash for each socket */ struct Curl_sh_entry { struct Curl_hash transfers; /* hash of transfers using this socket */ unsigned int action; /* what combined action READ/WRITE this socket waits for */ unsigned int users; /* number of transfers using this */ void *socketp; /* settable by users with curl_multi_assign() */ unsigned int readers; /* this many transfers want to read */ unsigned int writers; /* this many transfers want to write */ }; /* look up a given socket in the socket hash, skip invalid sockets */ static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh, curl_socket_t s) { if(s != CURL_SOCKET_BAD) { /* only look for proper sockets */ return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t)); } return NULL; } #define TRHASH_SIZE 13 static size_t trhash(void *key, size_t key_length, size_t slots_num) { size_t keyval = (size_t)*(struct Curl_easy **)key; (void) key_length; return (keyval % slots_num); } static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) { (void)k2_len; return !memcmp(k1, k2, k1_len); } static void trhash_dtor(void *nada) { (void)nada; } /* * The sockhash has its own separate subhash in each entry that need to be * safely destroyed first. */ static void sockhash_destroy(struct Curl_hash *h) { struct Curl_hash_iterator iter; struct Curl_hash_element *he; DEBUGASSERT(h); Curl_hash_start_iterate(h, &iter); he = Curl_hash_next_element(&iter); while(he) { struct Curl_sh_entry *sh = (struct Curl_sh_entry *)he->ptr; Curl_hash_destroy(&sh->transfers); he = Curl_hash_next_element(&iter); } Curl_hash_destroy(h); } /* make sure this socket is present in the hash for this handle */ static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh, curl_socket_t s) { struct Curl_sh_entry *there = sh_getentry(sh, s); struct Curl_sh_entry *check; if(there) { /* it is present, return fine */ return there; } /* not present, add it */ check = calloc(1, sizeof(struct Curl_sh_entry)); if(!check) return NULL; /* major failure */ Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash, trhash_compare, trhash_dtor); /* make/add new hash entry */ if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) { Curl_hash_destroy(&check->transfers); free(check); return NULL; /* major failure */ } return check; /* things are good in sockhash land */ } /* delete the given socket + handle from the hash */ static void sh_delentry(struct Curl_sh_entry *entry, struct Curl_hash *sh, curl_socket_t s) { Curl_hash_destroy(&entry->transfers); /* We remove the hash entry. This will end up in a call to sh_freeentry(). */ Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t)); } /* * free a sockhash entry */ static void sh_freeentry(void *freethis) { struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis; free(p); } static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) { (void) k1_len; (void) k2_len; return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2)); } static size_t hash_fd(void *key, size_t key_length, size_t slots_num) { curl_socket_t fd = *((curl_socket_t *) key); (void) key_length; return (fd % (curl_socket_t)slots_num); } /* * sh_init() creates a new socket hash and returns the handle for it. * * Quote from README.multi_socket: * * "Some tests at 7000 and 9000 connections showed that the socket hash lookup * is somewhat of a bottle neck. Its current implementation may be a bit too * limiting. It simply has a fixed-size array, and on each entry in the array * it has a linked list with entries. The hash only checks which list to scan * through. The code I had used so for used a list with merely 7 slots (as * that is what the DNS hash uses) but with 7000 connections that would make * an average of 1000 nodes in each list to run through. I upped that to 97 * slots (I believe a prime is suitable) and noticed a significant speed * increase. I need to reconsider the hash implementation or use a rather * large default value like this. At 9000 connections I was still below 10us * per call." * */ static void sh_init(struct Curl_hash *hash, size_t hashsize) { Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare, sh_freeentry); } /* multi->proto_hash destructor. Should never be called as elements * MUST be added with their own destructor */ static void ph_freeentry(void *p) { (void)p; /* Will always be FALSE. Cannot use a 0 assert here since compilers * are not in agreement if they then want a NORETURN attribute or * not. *sigh* */ DEBUGASSERT(p == NULL); } /* * multi_addmsg() * * Called when a transfer is completed. Adds the given msg pointer to * the list kept in the multi handle. */ static void multi_addmsg(struct Curl_multi *multi, struct Curl_message *msg) { Curl_llist_append(&multi->msglist, msg, &msg->list); } struct Curl_multi *Curl_multi_handle(size_t hashsize, /* socket hash */ size_t chashsize, /* connection hash */ size_t dnssize) /* dns hash */ { struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi)); if(!multi) return NULL; multi->magic = CURL_MULTI_HANDLE; Curl_init_dnscache(&multi->hostcache, dnssize); sh_init(&multi->sockhash, hashsize); Curl_hash_init(&multi->proto_hash, 23, Curl_hash_str, Curl_str_key_compare, ph_freeentry); if(Curl_conncache_init(&multi->conn_cache, multi, chashsize)) goto error; Curl_llist_init(&multi->msglist, NULL); Curl_llist_init(&multi->process, NULL); Curl_llist_init(&multi->pending, NULL); Curl_llist_init(&multi->msgsent, NULL); multi->multiplexing = TRUE; multi->max_concurrent_streams = 100; multi->last_timeout_ms = -1; #ifdef USE_WINSOCK multi->wsa_event = WSACreateEvent(); if(multi->wsa_event == WSA_INVALID_EVENT) goto error; #else #ifdef ENABLE_WAKEUP if(wakeup_create(multi->wakeup_pair, TRUE) < 0) { multi->wakeup_pair[0] = CURL_SOCKET_BAD; multi->wakeup_pair[1] = CURL_SOCKET_BAD; } #endif #endif return multi; error: sockhash_destroy(&multi->sockhash); Curl_hash_destroy(&multi->proto_hash); Curl_hash_destroy(&multi->hostcache); Curl_conncache_destroy(&multi->conn_cache); free(multi); return NULL; } struct Curl_multi *curl_multi_init(void) { return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE, CURL_CONNECTION_HASH_SIZE, CURL_DNS_HASH_SIZE); } #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) static void multi_warn_debug(struct Curl_multi *multi, struct Curl_easy *data) { if(!multi->warned) { infof(data, "!!! WARNING !!!"); infof(data, "This is a debug build of libcurl, " "do not use in production."); multi->warned = true; } } #else #define multi_warn_debug(x,y) Curl_nop_stmt #endif CURLMcode curl_multi_add_handle(struct Curl_multi *multi, struct Curl_easy *data) { CURLMcode rc; /* First, make some basic checks that the CURLM handle is a good handle */ if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; /* Verify that we got a somewhat good easy handle too */ if(!GOOD_EASY_HANDLE(data)) return CURLM_BAD_EASY_HANDLE; /* Prevent users from adding same easy handle more than once and prevent adding to more than one multi stack */ if(data->multi) return CURLM_ADDED_ALREADY; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; if(multi->dead) { /* a "dead" handle cannot get added transfers while any existing easy handles are still alive - but if there are none alive anymore, it is fine to start over and unmark the "deadness" of this handle */ if(multi->num_alive) return CURLM_ABORTED_BY_CALLBACK; multi->dead = FALSE; } if(data->multi_easy) { /* if this easy handle was previously used for curl_easy_perform(), there is a private multi handle here that we can kill */ curl_multi_cleanup(data->multi_easy); data->multi_easy = NULL; } /* Initialize timeout list for this handle */ Curl_llist_init(&data->state.timeoutlist, NULL); /* * No failure allowed in this function beyond this point. No modification of * easy nor multi handle allowed before this except for potential multi's * connection cache growing which will not be undone in this function no * matter what. */ if(data->set.errorbuffer) data->set.errorbuffer[0] = 0; data->state.os_errno = 0; /* make the Curl_easy refer back to this multi handle - before Curl_expire() is called. */ data->multi = multi; /* Set the timeout for this handle to expire really soon so that it will be taken care of even when this handle is added in the midst of operation when only the curl_multi_socket() API is used. During that flow, only sockets that time-out or have actions will be dealt with. Since this handle has no action yet, we make sure it times out to get things to happen. */ Curl_expire(data, 0, EXPIRE_RUN_NOW); rc = Curl_update_timer(multi); if(rc) { data->multi = NULL; /* not anymore */ return rc; } /* set the easy handle */ multistate(data, MSTATE_INIT); /* for multi interface connections, we share DNS cache automatically if the easy handle's one is currently not set. */ if(!data->dns.hostcache || (data->dns.hostcachetype == HCACHE_NONE)) { data->dns.hostcache = &multi->hostcache; data->dns.hostcachetype = HCACHE_MULTI; } /* Point to the shared or multi handle connection cache */ if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT))) data->state.conn_cache = &data->share->conn_cache; else data->state.conn_cache = &multi->conn_cache; data->state.lastconnect_id = -1; #ifdef USE_LIBPSL /* Do the same for PSL. */ if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL))) data->psl = &data->share->psl; else data->psl = &multi->psl; #endif /* add the easy handle to the process list */ Curl_llist_append(&multi->process, data, &data->multi_queue); /* increase the node-counter */ multi->num_easy++; /* increase the alive-counter */ multi->num_alive++; CONNCACHE_LOCK(data); /* The closure handle only ever has default timeouts set. To improve the state somewhat we clone the timeouts from each added handle so that the closure handle always has the same timeouts as the most recently added easy handle. */ data->state.conn_cache->closure_handle->set.timeout = data->set.timeout; data->state.conn_cache->closure_handle->set.server_response_timeout = data->set.server_response_timeout; data->state.conn_cache->closure_handle->set.no_signal = data->set.no_signal; /* the identifier inside the connection cache */ data->id = data->state.conn_cache->next_easy_id++; if(data->state.conn_cache->next_easy_id <= 0) data->state.conn_cache->next_easy_id = 0; /* the identifier inside the multi instance */ data->mid = multi->next_easy_mid++; if(multi->next_easy_mid <= 0) multi->next_easy_mid = 0; CONNCACHE_UNLOCK(data); multi_warn_debug(multi, data); return CURLM_OK; } #if 0 /* Debug-function, used like this: * * Curl_hash_print(&multi->sockhash, debug_print_sock_hash); * * Enable the hash print function first by editing hash.c */ static void debug_print_sock_hash(void *p) { struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p; fprintf(stderr, " [readers %u][writers %u]", sh->readers, sh->writers); } #endif static CURLcode multi_done(struct Curl_easy *data, CURLcode status, /* an error if this is called after an error was detected */ bool premature) { CURLcode result, r2; struct connectdata *conn = data->conn; #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) DEBUGF(infof(data, "multi_done[%s]: status: %d prem: %d done: %d", multi_statename[data->mstate], (int)status, (int)premature, data->state.done)); #else DEBUGF(infof(data, "multi_done: status: %d prem: %d done: %d", (int)status, (int)premature, data->state.done)); #endif if(data->state.done) /* Stop if multi_done() has already been called */ return CURLE_OK; /* Stop the resolver and free its own resources (but not dns_entry yet). */ Curl_resolver_kill(data); /* Cleanup possible redirect junk */ Curl_safefree(data->req.newurl); Curl_safefree(data->req.location); switch(status) { case CURLE_ABORTED_BY_CALLBACK: case CURLE_READ_ERROR: case CURLE_WRITE_ERROR: /* When we are aborted due to a callback return code it basically have to be counted as premature as there is trouble ahead if we do not. We have many callbacks and protocols work differently, we could potentially do this more fine-grained in the future. */ premature = TRUE; FALLTHROUGH(); default: break; } /* this calls the protocol-specific function pointer previously set */ if(conn->handler->done) result = conn->handler->done(data, status, premature); else result = status; if(CURLE_ABORTED_BY_CALLBACK != result) { /* avoid this if we already aborted by callback to avoid this calling another callback */ int rc = Curl_pgrsDone(data); if(!result && rc) result = CURLE_ABORTED_BY_CALLBACK; } /* Make sure that transfer client writes are really done now. */ r2 = Curl_xfer_write_done(data, premature); if(r2 && !result) result = r2; /* Inform connection filters that this transfer is done */ Curl_conn_ev_data_done(data, premature); process_pending_handles(data->multi); /* connection / multiplex */ if(!result) result = Curl_req_done(&data->req, data, premature); CONNCACHE_LOCK(data); Curl_detach_connection(data); if(CONN_INUSE(conn)) { /* Stop if still used. */ CONNCACHE_UNLOCK(data); DEBUGF(infof(data, "Connection still in use %zu, " "no more multi_done now!", Curl_llist_count(&conn->easyq))); return CURLE_OK; } data->state.done = TRUE; /* called just now! */ if(conn->dns_entry) Curl_resolv_unlink(data, &conn->dns_entry); /* done with this */ Curl_hostcache_prune(data); /* if data->set.reuse_forbid is TRUE, it means the libcurl client has forced us to close this connection. This is ignored for requests taking place in a NTLM/NEGOTIATE authentication handshake if conn->bits.close is TRUE, it means that the connection should be closed in spite of all our efforts to be nice, due to protocol restrictions in our or the server's end if premature is TRUE, it means this connection was said to be DONE before the entire request operation is complete and thus we cannot know in what state it is for reusing, so we are forced to close it. In a perfect world we can add code that keep track of if we really must close it here or not, but currently we have no such detail knowledge. */ data->state.recent_conn_id = conn->connection_id; if((data->set.reuse_forbid #if defined(USE_NTLM) && !(conn->http_ntlm_state == NTLMSTATE_TYPE2 || conn->proxy_ntlm_state == NTLMSTATE_TYPE2) #endif #if defined(USE_SPNEGO) && !(conn->http_negotiate_state == GSS_AUTHRECV || conn->proxy_negotiate_state == GSS_AUTHRECV) #endif ) || conn->bits.close || (premature && !Curl_conn_is_multiplex(conn, FIRSTSOCKET))) { DEBUGF(infof(data, "multi_done, not reusing connection=%" CURL_FORMAT_CURL_OFF_T ", forbid=%d" ", close=%d, premature=%d, conn_multiplex=%d", conn->connection_id, data->set.reuse_forbid, conn->bits.close, premature, Curl_conn_is_multiplex(conn, FIRSTSOCKET))); connclose(conn, "disconnecting"); Curl_conncache_remove_conn(data, conn, FALSE); CONNCACHE_UNLOCK(data); Curl_disconnect(data, conn, premature); } else { char buffer[256]; const char *host = #ifndef CURL_DISABLE_PROXY conn->bits.socksproxy ? conn->socks_proxy.host.dispname : conn->bits.httpproxy ? conn->http_proxy.host.dispname : #endif conn->bits.conn_to_host ? conn->conn_to_host.dispname : conn->host.dispname; /* create string before returning the connection */ curl_off_t connection_id = conn->connection_id; msnprintf(buffer, sizeof(buffer), "Connection #%" CURL_FORMAT_CURL_OFF_T " to host %s left intact", connection_id, host); /* the connection is no longer in use by this transfer */ CONNCACHE_UNLOCK(data); if(Curl_conncache_return_conn(data, conn)) { /* remember the most recently used connection */ data->state.lastconnect_id = connection_id; data->state.recent_conn_id = connection_id; infof(data, "%s", buffer); } else data->state.lastconnect_id = -1; } return result; } static int close_connect_only(struct Curl_easy *data, struct connectdata *conn, void *param) { (void)param; if(data->state.lastconnect_id != conn->connection_id) return 0; if(!conn->connect_only) return 1; connclose(conn, "Removing connect-only easy handle"); return 1; } CURLMcode curl_multi_remove_handle(struct Curl_multi *multi, struct Curl_easy *data) { struct Curl_easy *easy = data; bool premature; struct Curl_llist_node *e; CURLMcode rc; bool removed_timer = FALSE; /* First, make some basic checks that the CURLM handle is a good handle */ if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; /* Verify that we got a somewhat good easy handle too */ if(!GOOD_EASY_HANDLE(data) || !multi->num_easy) return CURLM_BAD_EASY_HANDLE; /* Prevent users from trying to remove same easy handle more than once */ if(!data->multi) return CURLM_OK; /* it is already removed so let's say it is fine! */ /* Prevent users from trying to remove an easy handle from the wrong multi */ if(data->multi != multi) return CURLM_BAD_EASY_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; premature = (data->mstate < MSTATE_COMPLETED) ? TRUE : FALSE; /* If the 'state' is not INIT or COMPLETED, we might need to do something nice to put the easy_handle in a good known state when this returns. */ if(premature) { /* this handle is "alive" so we need to count down the total number of alive connections when this is removed */ multi->num_alive--; } if(data->conn && data->mstate > MSTATE_DO && data->mstate < MSTATE_COMPLETED) { /* Set connection owner so that the DONE function closes it. We can safely do this here since connection is killed. */ streamclose(data->conn, "Removed with partial response"); } if(data->conn) { /* multi_done() clears the association between the easy handle and the connection. Note that this ignores the return code simply because there is nothing really useful to do with it anyway! */ (void)multi_done(data, data->result, premature); } /* The timer must be shut down before data->multi is set to NULL, else the timenode will remain in the splay tree after curl_easy_cleanup is called. Do it after multi_done() in case that sets another time! */ removed_timer = Curl_expire_clear(data); /* the handle is in a list, remove it from whichever it is */ Curl_node_remove(&data->multi_queue); if(data->dns.hostcachetype == HCACHE_MULTI) { /* stop using the multi handle's DNS cache, *after* the possible multi_done() call above */ data->dns.hostcache = NULL; data->dns.hostcachetype = HCACHE_NONE; } Curl_wildcard_dtor(&data->wildcard); /* change state without using multistate(), only to make singlesocket() do what we want */ data->mstate = MSTATE_COMPLETED; /* This ignores the return code even in case of problems because there is nothing more to do about that, here */ (void)singlesocket(multi, easy); /* to let the application know what sockets that vanish with this handle */ /* Remove the association between the connection and the handle */ Curl_detach_connection(data); if(data->set.connect_only && !data->multi_easy) { /* This removes a handle that was part the multi interface that used CONNECT_ONLY, that connection is now left alive but since this handle has bits.close set nothing can use that transfer anymore and it is forbidden from reuse. This easy handle cannot find the connection anymore once removed from the multi handle Better close the connection here, at once. */ struct connectdata *c; curl_socket_t s; s = Curl_getconnectinfo(data, &c); if((s != CURL_SOCKET_BAD) && c) { Curl_conncache_remove_conn(data, c, TRUE); Curl_disconnect(data, c, TRUE); } } if(data->state.lastconnect_id != -1) { /* Mark any connect-only connection for closure */ Curl_conncache_foreach(data, data->state.conn_cache, NULL, close_connect_only); } #ifdef USE_LIBPSL /* Remove the PSL association. */ if(data->psl == &multi->psl) data->psl = NULL; #endif /* as this was using a shared connection cache we clear the pointer to that since we are not part of that multi handle anymore */ data->state.conn_cache = NULL; /* make sure there is no pending message in the queue sent from this easy handle */ for(e = Curl_llist_head(&multi->msglist); e; e = Curl_node_next(e)) { struct Curl_message *msg = Curl_node_elem(e); if(msg->extmsg.easy_handle == easy) { Curl_node_remove(e); /* there can only be one from this specific handle */ break; } } data->multi = NULL; /* clear the association to this multi handle */ data->mid = -1; /* NOTE NOTE NOTE We do not touch the easy handle here! */ multi->num_easy--; /* one less to care about now */ process_pending_handles(multi); if(removed_timer) { rc = Curl_update_timer(multi); if(rc) return rc; } return CURLM_OK; } /* Return TRUE if the application asked for multiplexing */ bool Curl_multiplex_wanted(const struct Curl_multi *multi) { return (multi && (multi->multiplexing)); } /* * Curl_detach_connection() removes the given transfer from the connection. * * This is the only function that should clear data->conn. This will * occasionally be called with the data->conn pointer already cleared. */ void Curl_detach_connection(struct Curl_easy *data) { struct connectdata *conn = data->conn; if(conn) { Curl_conn_ev_data_detach(conn, data); Curl_node_remove(&data->conn_queue); } data->conn = NULL; } /* * Curl_attach_connection() attaches this transfer to this connection. * * This is the only function that should assign data->conn */ void Curl_attach_connection(struct Curl_easy *data, struct connectdata *conn) { DEBUGASSERT(data); DEBUGASSERT(!data->conn); DEBUGASSERT(conn); data->conn = conn; Curl_llist_append(&conn->easyq, data, &data->conn_queue); if(conn->handler && conn->handler->attach) conn->handler->attach(data, conn); Curl_conn_ev_data_attach(conn, data); } static int connecting_getsock(struct Curl_easy *data, curl_socket_t *socks) { struct connectdata *conn = data->conn; curl_socket_t sockfd; if(!conn) return GETSOCK_BLANK; sockfd = Curl_conn_get_socket(data, FIRSTSOCKET); if(sockfd != CURL_SOCKET_BAD) { /* Default is to wait to something from the server */ socks[0] = sockfd; return GETSOCK_READSOCK(0); } return GETSOCK_BLANK; } static int protocol_getsock(struct Curl_easy *data, curl_socket_t *socks) { struct connectdata *conn = data->conn; curl_socket_t sockfd; if(!conn) return GETSOCK_BLANK; if(conn->handler->proto_getsock) return conn->handler->proto_getsock(data, conn, socks); sockfd = Curl_conn_get_socket(data, FIRSTSOCKET); if(sockfd != CURL_SOCKET_BAD) { /* Default is to wait to something from the server */ socks[0] = sockfd; return GETSOCK_READSOCK(0); } return GETSOCK_BLANK; } static int domore_getsock(struct Curl_easy *data, curl_socket_t *socks) { struct connectdata *conn = data->conn; if(!conn) return GETSOCK_BLANK; if(conn->handler->domore_getsock) return conn->handler->domore_getsock(data, conn, socks); else if(conn->sockfd != CURL_SOCKET_BAD) { /* Default is that we want to send something to the server */ socks[0] = conn->sockfd; return GETSOCK_WRITESOCK(0); } return GETSOCK_BLANK; } static int doing_getsock(struct Curl_easy *data, curl_socket_t *socks) { struct connectdata *conn = data->conn; if(!conn) return GETSOCK_BLANK; if(conn->handler->doing_getsock) return conn->handler->doing_getsock(data, conn, socks); else if(conn->sockfd != CURL_SOCKET_BAD) { /* Default is that we want to send something to the server */ socks[0] = conn->sockfd; return GETSOCK_WRITESOCK(0); } return GETSOCK_BLANK; } static int perform_getsock(struct Curl_easy *data, curl_socket_t *sock) { struct connectdata *conn = data->conn; if(!conn) return GETSOCK_BLANK; else if(conn->handler->perform_getsock) return conn->handler->perform_getsock(data, conn, sock); else { /* Default is to obey the data->req.keepon flags for send/recv */ int bitmap = GETSOCK_BLANK; unsigned sockindex = 0; if(CURL_WANT_RECV(data)) { DEBUGASSERT(conn->sockfd != CURL_SOCKET_BAD); bitmap |= GETSOCK_READSOCK(sockindex); sock[sockindex] = conn->sockfd; } if(Curl_req_want_send(data)) { if((conn->sockfd != conn->writesockfd) || bitmap == GETSOCK_BLANK) { /* only if they are not the same socket and we have a readable one, we increase index */ if(bitmap != GETSOCK_BLANK) sockindex++; /* increase index if we need two entries */ DEBUGASSERT(conn->writesockfd != CURL_SOCKET_BAD); sock[sockindex] = conn->writesockfd; } bitmap |= GETSOCK_WRITESOCK(sockindex); } return bitmap; } } /* Initializes `poll_set` with the current socket poll actions needed * for transfer `data`. */ static void multi_getsock(struct Curl_easy *data, struct easy_pollset *ps) { bool expect_sockets = TRUE; /* The no connection case can happen when this is called from curl_multi_remove_handle() => singlesocket() => multi_getsock(). */ Curl_pollset_reset(data, ps); if(!data->conn) return; switch(data->mstate) { case MSTATE_INIT: case MSTATE_PENDING: case MSTATE_SETUP: case MSTATE_CONNECT: /* nothing to poll for yet */ expect_sockets = FALSE; break; case MSTATE_RESOLVING: Curl_pollset_add_socks(data, ps, Curl_resolv_getsock); /* connection filters are not involved in this phase. It's ok if we get no * sockets to wait for. Resolving can wake up from other sources. */ expect_sockets = FALSE; break; case MSTATE_CONNECTING: case MSTATE_TUNNELING: Curl_pollset_add_socks(data, ps, connecting_getsock); Curl_conn_adjust_pollset(data, ps); break; case MSTATE_PROTOCONNECT: case MSTATE_PROTOCONNECTING: Curl_pollset_add_socks(data, ps, protocol_getsock); Curl_conn_adjust_pollset(data, ps); break; case MSTATE_DO: case MSTATE_DOING: Curl_pollset_add_socks(data, ps, doing_getsock); Curl_conn_adjust_pollset(data, ps); break; case MSTATE_DOING_MORE: Curl_pollset_add_socks(data, ps, domore_getsock); Curl_conn_adjust_pollset(data, ps); break; case MSTATE_DID: /* same as PERFORMING in regard to polling */ case MSTATE_PERFORMING: Curl_pollset_add_socks(data, ps, perform_getsock); Curl_conn_adjust_pollset(data, ps); break; case MSTATE_RATELIMITING: /* we need to let time pass, ignore socket(s) */ expect_sockets = FALSE; break; case MSTATE_DONE: case MSTATE_COMPLETED: case MSTATE_MSGSENT: /* nothing more to poll for */ expect_sockets = FALSE; break; default: failf(data, "multi_getsock: unexpected multi state %d", data->mstate); DEBUGASSERT(0); expect_sockets = FALSE; break; } if(expect_sockets && !ps->num && !(data->req.keepon & (KEEP_RECV_PAUSE|KEEP_SEND_PAUSE)) && Curl_conn_is_ip_connected(data, FIRSTSOCKET)) { infof(data, "WARNING: no socket in pollset, transfer may stall!"); DEBUGASSERT(0); } } CURLMcode curl_multi_fdset(struct Curl_multi *multi, fd_set *read_fd_set, fd_set *write_fd_set, fd_set *exc_fd_set, int *max_fd) { /* Scan through all the easy handles to get the file descriptors set. Some easy handles may not have connected to the remote host yet, and then we must make sure that is done. */ int this_max_fd = -1; struct Curl_llist_node *e; (void)exc_fd_set; /* not used */ if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; for(e = Curl_llist_head(&multi->process); e; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); unsigned int i; multi_getsock(data, &data->last_poll); for(i = 0; i < data->last_poll.num; i++) { if(!FDSET_SOCK(data->last_poll.sockets[i])) /* pretend it does not exist */ continue; if(data->last_poll.actions[i] & CURL_POLL_IN) FD_SET(data->last_poll.sockets[i], read_fd_set); if(data->last_poll.actions[i] & CURL_POLL_OUT) FD_SET(data->last_poll.sockets[i], write_fd_set); if((int)data->last_poll.sockets[i] > this_max_fd) this_max_fd = (int)data->last_poll.sockets[i]; } } *max_fd = this_max_fd; return CURLM_OK; } CURLMcode curl_multi_waitfds(struct Curl_multi *multi, struct curl_waitfd *ufds, unsigned int size, unsigned int *fd_count) { struct curl_waitfds cwfds; CURLMcode result = CURLM_OK; struct Curl_llist_node *e; if(!ufds) return CURLM_BAD_FUNCTION_ARGUMENT; if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; Curl_waitfds_init(&cwfds, ufds, size); for(e = Curl_llist_head(&multi->process); e; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); multi_getsock(data, &data->last_poll); if(Curl_waitfds_add_ps(&cwfds, &data->last_poll)) { result = CURLM_OUT_OF_MEMORY; goto out; } } if(Curl_conncache_add_waitfds(&multi->conn_cache, &cwfds)) { result = CURLM_OUT_OF_MEMORY; goto out; } out: if(fd_count) *fd_count = cwfds.n; return result; } #ifdef USE_WINSOCK /* Reset FD_WRITE for TCP sockets. Nothing is actually sent. UDP sockets cannot * be reset this way because an empty datagram would be sent. #9203 * * "On Windows the internal state of FD_WRITE as returned from * WSAEnumNetworkEvents is only reset after successful send()." */ static void reset_socket_fdwrite(curl_socket_t s) { int t; int l = (int)sizeof(t); if(!getsockopt(s, SOL_SOCKET, SO_TYPE, (char *)&t, &l) && t == SOCK_STREAM) send(s, NULL, 0, 0); } #endif #define NUM_POLLS_ON_STACK 10 static CURLMcode multi_wait(struct Curl_multi *multi, struct curl_waitfd extra_fds[], unsigned int extra_nfds, int timeout_ms, int *ret, bool extrawait, /* when no socket, wait */ bool use_wakeup) { size_t i; struct curltime expire_time; long timeout_internal; int retcode = 0; struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK]; struct curl_pollfds cpfds; unsigned int curl_nfds = 0; /* how many pfds are for curl transfers */ CURLMcode result = CURLM_OK; struct Curl_llist_node *e; #ifdef USE_WINSOCK WSANETWORKEVENTS wsa_events; DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT); #endif #ifndef ENABLE_WAKEUP (void)use_wakeup; #endif if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; if(timeout_ms < 0) return CURLM_BAD_FUNCTION_ARGUMENT; Curl_pollfds_init(&cpfds, a_few_on_stack, NUM_POLLS_ON_STACK); /* Add the curl handles to our pollfds first */ for(e = Curl_llist_head(&multi->process); e; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); multi_getsock(data, &data->last_poll); if(Curl_pollfds_add_ps(&cpfds, &data->last_poll)) { result = CURLM_OUT_OF_MEMORY; goto out; } } if(Curl_conncache_add_pollfds(&multi->conn_cache, &cpfds)) { result = CURLM_OUT_OF_MEMORY; goto out; } curl_nfds = cpfds.n; /* what curl internally uses in cpfds */ /* Add external file descriptions from poll-like struct curl_waitfd */ for(i = 0; i < extra_nfds; i++) { unsigned short events = 0; if(extra_fds[i].events & CURL_WAIT_POLLIN) events |= POLLIN; if(extra_fds[i].events & CURL_WAIT_POLLPRI) events |= POLLPRI; if(extra_fds[i].events & CURL_WAIT_POLLOUT) events |= POLLOUT; if(Curl_pollfds_add_sock(&cpfds, extra_fds[i].fd, events)) { result = CURLM_OUT_OF_MEMORY; goto out; } } #ifdef USE_WINSOCK /* Set the WSA events based on the collected pollds */ for(i = 0; i < cpfds.n; i++) { long mask = 0; if(cpfds.pfds[i].events & POLLIN) mask |= FD_READ|FD_ACCEPT|FD_CLOSE; if(cpfds.pfds[i].events & POLLPRI) mask |= FD_OOB; if(cpfds.pfds[i].events & POLLOUT) { mask |= FD_WRITE|FD_CONNECT|FD_CLOSE; reset_socket_fdwrite(cpfds.pfds[i].fd); } if(mask) { if(WSAEventSelect(cpfds.pfds[i].fd, multi->wsa_event, mask) != 0) { result = CURLM_OUT_OF_MEMORY; goto out; } } } #endif #ifdef ENABLE_WAKEUP #ifndef USE_WINSOCK if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { if(Curl_pollfds_add_sock(&cpfds, multi->wakeup_pair[0], POLLIN)) { result = CURLM_OUT_OF_MEMORY; goto out; } } #endif #endif /* We check the internal timeout *AFTER* we collected all sockets to * poll. Collecting the sockets may install new timers by protocols * and connection filters. * Use the shorter one of the internal and the caller requested timeout. */ (void)multi_timeout(multi, &expire_time, &timeout_internal); if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms)) timeout_ms = (int)timeout_internal; #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) if(cpfds.n || use_wakeup) { #else if(cpfds.n) { #endif int pollrc; #ifdef USE_WINSOCK if(cpfds.n) /* just pre-check with Winsock */ pollrc = Curl_poll(cpfds.pfds, cpfds.n, 0); else pollrc = 0; #else pollrc = Curl_poll(cpfds.pfds, cpfds.n, timeout_ms); /* wait... */ #endif if(pollrc < 0) { result = CURLM_UNRECOVERABLE_POLL; goto out; } if(pollrc > 0) { retcode = pollrc; #ifdef USE_WINSOCK } else { /* now wait... if not ready during the pre-check (pollrc == 0) */ WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, (DWORD)timeout_ms, FALSE); } /* With Winsock, we have to run the following section unconditionally to call WSAEventSelect(fd, event, 0) on all the sockets */ { #endif /* copy revents results from the poll to the curl_multi_wait poll struct, the bit values of the actual underlying poll() implementation may not be the same as the ones in the public libcurl API! */ for(i = 0; i < extra_nfds; i++) { unsigned r = (unsigned)cpfds.pfds[curl_nfds + i].revents; unsigned short mask = 0; #ifdef USE_WINSOCK curl_socket_t s = extra_fds[i].fd; wsa_events.lNetworkEvents = 0; if(WSAEnumNetworkEvents(s, NULL, &wsa_events) == 0) { if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE)) mask |= CURL_WAIT_POLLIN; if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE)) mask |= CURL_WAIT_POLLOUT; if(wsa_events.lNetworkEvents & FD_OOB) mask |= CURL_WAIT_POLLPRI; if(ret && !pollrc && wsa_events.lNetworkEvents) retcode++; } WSAEventSelect(s, multi->wsa_event, 0); if(!pollrc) { extra_fds[i].revents = (short)mask; continue; } #endif if(r & POLLIN) mask |= CURL_WAIT_POLLIN; if(r & POLLOUT) mask |= CURL_WAIT_POLLOUT; if(r & POLLPRI) mask |= CURL_WAIT_POLLPRI; extra_fds[i].revents = (short)mask; } #ifdef USE_WINSOCK /* Count up all our own sockets that had activity, and remove them from the event. */ if(curl_nfds) { for(e = Curl_llist_head(&multi->process); e && !result; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); for(i = 0; i < data->last_poll.num; i++) { wsa_events.lNetworkEvents = 0; if(WSAEnumNetworkEvents(data->last_poll.sockets[i], NULL, &wsa_events) == 0) { if(ret && !pollrc && wsa_events.lNetworkEvents) retcode++; } WSAEventSelect(data->last_poll.sockets[i], multi->wsa_event, 0); } } } WSAResetEvent(multi->wsa_event); #else #ifdef ENABLE_WAKEUP if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { if(cpfds.pfds[curl_nfds + extra_nfds].revents & POLLIN) { char buf[64]; ssize_t nread; while(1) { /* the reading socket is non-blocking, try to read data from it until it receives an error (except EINTR). In normal cases it will get EAGAIN or EWOULDBLOCK when there is no more data, breaking the loop. */ nread = wakeup_read(multi->wakeup_pair[0], buf, sizeof(buf)); if(nread <= 0) { if(nread < 0 && EINTR == SOCKERRNO) continue; break; } } /* do not count the wakeup socket into the returned value */ retcode--; } } #endif #endif } } if(ret) *ret = retcode; #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) if(extrawait && !cpfds.n && !use_wakeup) { #else if(extrawait && !cpfds.n) { #endif long sleep_ms = 0; /* Avoid busy-looping when there is nothing particular to wait for */ if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) { if(sleep_ms > timeout_ms) sleep_ms = timeout_ms; /* when there are no easy handles in the multi, this holds a -1 timeout */ else if(sleep_ms < 0) sleep_ms = timeout_ms; Curl_wait_ms(sleep_ms); } } out: Curl_pollfds_cleanup(&cpfds); return result; } CURLMcode curl_multi_wait(struct Curl_multi *multi, struct curl_waitfd extra_fds[], unsigned int extra_nfds, int timeout_ms, int *ret) { return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE, FALSE); } CURLMcode curl_multi_poll(struct Curl_multi *multi, struct curl_waitfd extra_fds[], unsigned int extra_nfds, int timeout_ms, int *ret) { return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE, TRUE); } CURLMcode curl_multi_wakeup(struct Curl_multi *multi) { /* this function is usually called from another thread, it has to be careful only to access parts of the Curl_multi struct that are constant */ #if defined(ENABLE_WAKEUP) && !defined(USE_WINSOCK) #ifdef USE_EVENTFD const void *buf; const uint64_t val = 1; #else char buf[1]; #endif #endif /* GOOD_MULTI_HANDLE can be safely called */ if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; #ifdef ENABLE_WAKEUP #ifdef USE_WINSOCK if(WSASetEvent(multi->wsa_event)) return CURLM_OK; #else /* the wakeup_pair variable is only written during init and cleanup, making it safe to access from another thread after the init part and before cleanup */ if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) { #ifdef USE_EVENTFD buf = &val; #else buf[0] = 1; #endif while(1) { /* swrite() is not thread-safe in general, because concurrent calls can have their messages interleaved, but in this case the content of the messages does not matter, which makes it ok to call. The write socket is set to non-blocking, this way this function cannot block, making it safe to call even from the same thread that will call curl_multi_wait(). If swrite() returns that it would block, it is considered successful because it means that previous calls to this function will wake up the poll(). */ if(wakeup_write(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) { int err = SOCKERRNO; int return_success; #ifdef USE_WINSOCK return_success = WSAEWOULDBLOCK == err; #else if(EINTR == err) continue; return_success = EWOULDBLOCK == err || EAGAIN == err; #endif if(!return_success) return CURLM_WAKEUP_FAILURE; } return CURLM_OK; } } #endif #endif return CURLM_WAKEUP_FAILURE; } /* * multi_ischanged() is called * * Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND * => CONNECT action. * * Set 'clear' to TRUE to have it also clear the state variable. */ static bool multi_ischanged(struct Curl_multi *multi, bool clear) { bool retval = multi->recheckstate; if(clear) multi->recheckstate = FALSE; return retval; } /* * Curl_multi_connchanged() is called to tell that there is a connection in * this multi handle that has changed state (multiplexing become possible, the * number of allowed streams changed or similar), and a subsequent use of this * multi handle should move CONNECT_PEND handles back to CONNECT to have them * retry. */ void Curl_multi_connchanged(struct Curl_multi *multi) { multi->recheckstate = TRUE; } CURLMcode Curl_multi_add_perform(struct Curl_multi *multi, struct Curl_easy *data, struct connectdata *conn) { CURLMcode rc; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; rc = curl_multi_add_handle(multi, data); if(!rc) { struct SingleRequest *k = &data->req; /* pass in NULL for 'conn' here since we do not want to init the connection, only this transfer */ Curl_init_do(data, NULL); /* take this handle to the perform state right away */ multistate(data, MSTATE_PERFORMING); Curl_attach_connection(data, conn); k->keepon |= KEEP_RECV; /* setup to receive! */ } return rc; } static CURLcode multi_do(struct Curl_easy *data, bool *done) { CURLcode result = CURLE_OK; struct connectdata *conn = data->conn; DEBUGASSERT(conn); DEBUGASSERT(conn->handler); if(conn->handler->do_it) result = conn->handler->do_it(data, done); return result; } /* * multi_do_more() is called during the DO_MORE multi state. It is basically a * second stage DO state which (wrongly) was introduced to support FTP's * second connection. * * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to * DOING state there is more work to do! */ static CURLcode multi_do_more(struct Curl_easy *data, int *complete) { CURLcode result = CURLE_OK; struct connectdata *conn = data->conn; *complete = 0; if(conn->handler->do_more) result = conn->handler->do_more(data, complete); return result; } /* * Check whether a timeout occurred, and handle it if it did */ static bool multi_handle_timeout(struct Curl_easy *data, struct curltime *now, bool *stream_error, CURLcode *result, bool connect_timeout) { timediff_t timeout_ms = Curl_timeleft(data, now, connect_timeout); if(timeout_ms < 0) { /* Handle timed out */ struct curltime since; if(connect_timeout) since = data->progress.t_startsingle; else since = data->progress.t_startop; if(data->mstate == MSTATE_RESOLVING) failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T " milliseconds", Curl_timediff(*now, since)); else if(data->mstate == MSTATE_CONNECTING) failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T " milliseconds", Curl_timediff(*now, since)); else { struct SingleRequest *k = &data->req; if(k->size != -1) { failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T " milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %" CURL_FORMAT_CURL_OFF_T " bytes received", Curl_timediff(*now, since), k->bytecount, k->size); } else { failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T " milliseconds with %" CURL_FORMAT_CURL_OFF_T " bytes received", Curl_timediff(*now, since), k->bytecount); } } *result = CURLE_OPERATION_TIMEDOUT; if(data->conn) { /* Force connection closed if the connection has indeed been used */ if(data->mstate > MSTATE_DO) { streamclose(data->conn, "Disconnect due to timeout"); *stream_error = TRUE; } (void)multi_done(data, *result, TRUE); } return TRUE; } return FALSE; } /* * We are doing protocol-specific connecting and this is being called over and * over from the multi interface until the connection phase is done on * protocol layer. */ static CURLcode protocol_connecting(struct Curl_easy *data, bool *done) { CURLcode result = CURLE_OK; struct connectdata *conn = data->conn; if(conn && conn->handler->connecting) { *done = FALSE; result = conn->handler->connecting(data, done); } else *done = TRUE; return result; } /* * We are DOING this is being called over and over from the multi interface * until the DOING phase is done on protocol layer. */ static CURLcode protocol_doing(struct Curl_easy *data, bool *done) { CURLcode result = CURLE_OK; struct connectdata *conn = data->conn; if(conn && conn->handler->doing) { *done = FALSE; result = conn->handler->doing(data, done); } else *done = TRUE; return result; } /* * We have discovered that the TCP connection has been successful, we can now * proceed with some action. * */ static CURLcode protocol_connect(struct Curl_easy *data, bool *protocol_done) { CURLcode result = CURLE_OK; struct connectdata *conn = data->conn; DEBUGASSERT(conn); DEBUGASSERT(protocol_done); *protocol_done = FALSE; if(Curl_conn_is_connected(conn, FIRSTSOCKET) && conn->bits.protoconnstart) { /* We already are connected, get back. This may happen when the connect worked fine in the first call, like when we connect to a local server or proxy. Note that we do not know if the protocol is actually done. Unless this protocol does not have any protocol-connect callback, as then we know we are done. */ if(!conn->handler->connecting) *protocol_done = TRUE; return CURLE_OK; } if(!conn->bits.protoconnstart) { if(conn->handler->connect_it) { /* is there a protocol-specific connect() procedure? */ /* Call the protocol-specific connect function */ result = conn->handler->connect_it(data, protocol_done); } else *protocol_done = TRUE; /* it has started, possibly even completed but that knowledge is not stored in this bit! */ if(!result) conn->bits.protoconnstart = TRUE; } return result; /* pass back status */ } static void set_in_callback(struct Curl_multi *multi, bool value) { multi->in_callback = value; } /* * posttransfer() is called immediately after a transfer ends */ static void multi_posttransfer(struct Curl_easy *data) { #if defined(HAVE_SIGNAL) && defined(SIGPIPE) && !defined(HAVE_MSG_NOSIGNAL) /* restore the signal handler for SIGPIPE before we get back */ if(!data->set.no_signal) signal(SIGPIPE, data->state.prev_signal); #else (void)data; /* unused parameter */ #endif } static CURLMcode multi_runsingle(struct Curl_multi *multi, struct curltime *nowp, struct Curl_easy *data) { struct Curl_message *msg = NULL; bool connected; bool async; bool protocol_connected = FALSE; bool dophase_done = FALSE; CURLMcode rc; CURLcode result = CURLE_OK; timediff_t recv_timeout_ms; timediff_t send_timeout_ms; int control; if(!GOOD_EASY_HANDLE(data)) return CURLM_BAD_EASY_HANDLE; if(multi->dead) { /* a multi-level callback returned error before, meaning every individual transfer now has failed */ result = CURLE_ABORTED_BY_CALLBACK; multi_posttransfer(data); multi_done(data, result, FALSE); multistate(data, MSTATE_COMPLETED); } multi_warn_debug(multi, data); do { /* A "stream" here is a logical stream if the protocol can handle that (HTTP/2), or the full connection for older protocols */ bool stream_error = FALSE; rc = CURLM_OK; if(multi_ischanged(multi, TRUE)) { DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue")); process_pending_handles(multi); /* multiplexed */ } if(data->mstate > MSTATE_CONNECT && data->mstate < MSTATE_COMPLETED) { /* Make sure we set the connection's current owner */ DEBUGASSERT(data->conn); if(!data->conn) return CURLM_INTERNAL_ERROR; } /* Wait for the connect state as only then is the start time stored, but we must not check already completed handles */ if((data->mstate >= MSTATE_CONNECT) && (data->mstate < MSTATE_COMPLETED) && multi_handle_timeout(data, nowp, &stream_error, &result, FALSE)) /* Skip the statemachine and go directly to error handling section. */ goto statemachine_end; switch(data->mstate) { case MSTATE_INIT: /* Transitional state. init this transfer. A handle never comes back to this state. */ result = Curl_pretransfer(data); if(result) break; /* after init, go SETUP */ multistate(data, MSTATE_SETUP); (void)Curl_pgrsTime(data, TIMER_STARTOP); FALLTHROUGH(); case MSTATE_SETUP: /* Transitional state. Setup things for a new transfer. The handle can come back to this state on a redirect. */ *nowp = Curl_pgrsTime(data, TIMER_STARTSINGLE); if(data->set.timeout) Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT); if(data->set.connecttimeout) /* Since a connection might go to pending and back to CONNECT several times before it actually takes off, we need to set the timeout once in SETUP before we enter CONNECT the first time. */ Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT); multistate(data, MSTATE_CONNECT); FALLTHROUGH(); case MSTATE_CONNECT: /* Connect. We want to get a connection identifier filled in. This state can be entered from SETUP and from PENDING. */ result = Curl_connect(data, &async, &connected); if(CURLE_NO_CONNECTION_AVAILABLE == result) { /* There was no connection available. We will go to the pending state and wait for an available connection. */ multistate(data, MSTATE_PENDING); /* unlink from process list */ Curl_node_remove(&data->multi_queue); /* add handle to pending list */ Curl_llist_append(&multi->pending, data, &data->multi_queue); result = CURLE_OK; break; } else process_pending_handles(data->multi); if(!result) { *nowp = Curl_pgrsTime(data, TIMER_POSTQUEUE); if(async) /* We are now waiting for an asynchronous name lookup */ multistate(data, MSTATE_RESOLVING); else { /* after the connect has been sent off, go WAITCONNECT unless the protocol connect is already done and we can go directly to WAITDO or DO! */ rc = CURLM_CALL_MULTI_PERFORM; if(connected) multistate(data, MSTATE_PROTOCONNECT); else { multistate(data, MSTATE_CONNECTING); } } } break; case MSTATE_RESOLVING: /* awaiting an asynch name resolve to complete */ { struct Curl_dns_entry *dns = NULL; struct connectdata *conn = data->conn; const char *hostname; DEBUGASSERT(conn); #ifndef CURL_DISABLE_PROXY if(conn->bits.httpproxy) hostname = conn->http_proxy.host.name; else #endif if(conn->bits.conn_to_host) hostname = conn->conn_to_host.name; else hostname = conn->host.name; /* check if we have the name resolved by now */ dns = Curl_fetch_addr(data, hostname, conn->primary.remote_port); if(dns) { #ifdef CURLRES_ASYNCH data->state.async.dns = dns; data->state.async.done = TRUE; #endif result = CURLE_OK; infof(data, "Hostname '%s' was found in DNS cache", hostname); } if(!dns) result = Curl_resolv_check(data, &dns); /* Update sockets here, because the socket(s) may have been closed and the application thus needs to be told, even if it is likely that the same socket(s) will again be used further down. If the name has not yet been resolved, it is likely that new sockets have been opened in an attempt to contact another resolver. */ rc = singlesocket(multi, data); if(rc) return rc; if(dns) { /* Perform the next step in the connection phase, and then move on to the WAITCONNECT state */ result = Curl_once_resolved(data, &connected); if(result) /* if Curl_once_resolved() returns failure, the connection struct is already freed and gone */ data->conn = NULL; /* no more connection */ else { /* call again please so that we get the next socket setup */ rc = CURLM_CALL_MULTI_PERFORM; if(connected) multistate(data, MSTATE_PROTOCONNECT); else { multistate(data, MSTATE_CONNECTING); } } } if(result) { /* failure detected */ stream_error = TRUE; break; } } break; #ifndef CURL_DISABLE_HTTP case MSTATE_TUNNELING: /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */ DEBUGASSERT(data->conn); result = Curl_http_connect(data, &protocol_connected); #ifndef CURL_DISABLE_PROXY if(data->conn->bits.proxy_connect_closed) { rc = CURLM_CALL_MULTI_PERFORM; /* connect back to proxy again */ result = CURLE_OK; multi_done(data, CURLE_OK, FALSE); multistate(data, MSTATE_CONNECT); } else #endif if(!result) { rc = CURLM_CALL_MULTI_PERFORM; /* initiate protocol connect phase */ multistate(data, MSTATE_PROTOCONNECT); } else stream_error = TRUE; break; #endif case MSTATE_CONNECTING: /* awaiting a completion of an asynch TCP connect */ DEBUGASSERT(data->conn); result = Curl_conn_connect(data, FIRSTSOCKET, FALSE, &connected); if(connected && !result) { rc = CURLM_CALL_MULTI_PERFORM; multistate(data, MSTATE_PROTOCONNECT); } else if(result) { /* failure detected */ multi_posttransfer(data); multi_done(data, result, TRUE); stream_error = TRUE; break; } break; case MSTATE_PROTOCONNECT: if(!result && data->conn->bits.reuse) { /* ftp seems to hang when protoconnect on reused connection * since we handle PROTOCONNECT in general inside the filers, it * seems wrong to restart this on a reused connection. */ multistate(data, MSTATE_DO); rc = CURLM_CALL_MULTI_PERFORM; break; } if(!result) result = protocol_connect(data, &protocol_connected); if(!result && !protocol_connected) { /* switch to waiting state */ multistate(data, MSTATE_PROTOCONNECTING); rc = CURLM_CALL_MULTI_PERFORM; } else if(!result) { /* protocol connect has completed, go WAITDO or DO */ multistate(data, MSTATE_DO); rc = CURLM_CALL_MULTI_PERFORM; } else { /* failure detected */ multi_posttransfer(data); multi_done(data, result, TRUE); stream_error = TRUE; } break; case MSTATE_PROTOCONNECTING: /* protocol-specific connect phase */ result = protocol_connecting(data, &protocol_connected); if(!result && protocol_connected) { /* after the connect has completed, go WAITDO or DO */ multistate(data, MSTATE_DO); rc = CURLM_CALL_MULTI_PERFORM; } else if(result) { /* failure detected */ multi_posttransfer(data); multi_done(data, result, TRUE); stream_error = TRUE; } break; case MSTATE_DO: if(data->set.fprereq) { int prereq_rc; /* call the prerequest callback function */ Curl_set_in_callback(data, true); prereq_rc = data->set.fprereq(data->set.prereq_userp, data->info.primary.remote_ip, data->info.primary.local_ip, data->info.primary.remote_port, data->info.primary.local_port); Curl_set_in_callback(data, false); if(prereq_rc != CURL_PREREQFUNC_OK) { failf(data, "operation aborted by pre-request callback"); /* failure in pre-request callback - do not do any other processing */ result = CURLE_ABORTED_BY_CALLBACK; multi_posttransfer(data); multi_done(data, result, FALSE); stream_error = TRUE; break; } } if(data->set.connect_only == 1) { /* keep connection open for application to use the socket */ connkeep(data->conn, "CONNECT_ONLY"); multistate(data, MSTATE_DONE); result = CURLE_OK; rc = CURLM_CALL_MULTI_PERFORM; } else { /* Perform the protocol's DO action */ result = multi_do(data, &dophase_done); /* When multi_do() returns failure, data->conn might be NULL! */ if(!result) { if(!dophase_done) { #ifndef CURL_DISABLE_FTP /* some steps needed for wildcard matching */ if(data->state.wildcardmatch) { struct WildcardData *wc = data->wildcard; if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) { /* skip some states if it is important */ multi_done(data, CURLE_OK, FALSE); /* if there is no connection left, skip the DONE state */ multistate(data, data->conn ? MSTATE_DONE : MSTATE_COMPLETED); rc = CURLM_CALL_MULTI_PERFORM; break; } } #endif /* DO was not completed in one function call, we must continue DOING... */ multistate(data, MSTATE_DOING); rc = CURLM_CALL_MULTI_PERFORM; } /* after DO, go DO_DONE... or DO_MORE */ else if(data->conn->bits.do_more) { /* we are supposed to do more, but we need to sit down, relax and wait a little while first */ multistate(data, MSTATE_DOING_MORE); rc = CURLM_CALL_MULTI_PERFORM; } else { /* we are done with the DO, now DID */ multistate(data, MSTATE_DID); rc = CURLM_CALL_MULTI_PERFORM; } } else if((CURLE_SEND_ERROR == result) && data->conn->bits.reuse) { /* * In this situation, a connection that we were trying to use * may have unexpectedly died. If possible, send the connection * back to the CONNECT phase so we can try again. */ char *newurl = NULL; followtype follow = FOLLOW_NONE; CURLcode drc; drc = Curl_retry_request(data, &newurl); if(drc) { /* a failure here pretty much implies an out of memory */ result = drc; stream_error = TRUE; } multi_posttransfer(data); drc = multi_done(data, result, FALSE); /* When set to retry the connection, we must go back to the CONNECT * state */ if(newurl) { if(!drc || (drc == CURLE_SEND_ERROR)) { follow = FOLLOW_RETRY; drc = Curl_follow(data, newurl, follow); if(!drc) { multistate(data, MSTATE_SETUP); rc = CURLM_CALL_MULTI_PERFORM; result = CURLE_OK; } else { /* Follow failed */ result = drc; } } else { /* done did not return OK or SEND_ERROR */ result = drc; } } else { /* Have error handler disconnect conn if we cannot retry */ stream_error = TRUE; } free(newurl); } else { /* failure detected */ multi_posttransfer(data); if(data->conn) multi_done(data, result, FALSE); stream_error = TRUE; } } break; case MSTATE_DOING: /* we continue DOING until the DO phase is complete */ DEBUGASSERT(data->conn); result = protocol_doing(data, &dophase_done); if(!result) { if(dophase_done) { /* after DO, go DO_DONE or DO_MORE */ multistate(data, data->conn->bits.do_more? MSTATE_DOING_MORE : MSTATE_DID); rc = CURLM_CALL_MULTI_PERFORM; } /* dophase_done */ } else { /* failure detected */ multi_posttransfer(data); multi_done(data, result, FALSE); stream_error = TRUE; } break; case MSTATE_DOING_MORE: /* * When we are connected, DOING MORE and then go DID */ DEBUGASSERT(data->conn); result = multi_do_more(data, &control); if(!result) { if(control) { /* if positive, advance to DO_DONE if negative, go back to DOING */ multistate(data, control == 1? MSTATE_DID : MSTATE_DOING); rc = CURLM_CALL_MULTI_PERFORM; } /* else stay in DO_MORE */ } else { /* failure detected */ multi_posttransfer(data); multi_done(data, result, FALSE); stream_error = TRUE; } break; case MSTATE_DID: DEBUGASSERT(data->conn); if(data->conn->bits.multiplex) /* Check if we can move pending requests to send pipe */ process_pending_handles(multi); /* multiplexed */ /* Only perform the transfer if there is a good socket to work with. Having both BAD is a signal to skip immediately to DONE */ if((data->conn->sockfd != CURL_SOCKET_BAD) || (data->conn->writesockfd != CURL_SOCKET_BAD)) multistate(data, MSTATE_PERFORMING); else { #ifndef CURL_DISABLE_FTP if(data->state.wildcardmatch && ((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) { data->wildcard->state = CURLWC_DONE; } #endif multistate(data, MSTATE_DONE); } rc = CURLM_CALL_MULTI_PERFORM; break; case MSTATE_RATELIMITING: /* limit-rate exceeded in either direction */ DEBUGASSERT(data->conn); /* if both rates are within spec, resume transfer */ if(Curl_pgrsUpdate(data)) result = CURLE_ABORTED_BY_CALLBACK; else result = Curl_speedcheck(data, *nowp); if(result) { if(!(data->conn->handler->flags & PROTOPT_DUAL) && result != CURLE_HTTP2_STREAM) streamclose(data->conn, "Transfer returned error"); multi_posttransfer(data); multi_done(data, result, TRUE); } else { send_timeout_ms = 0; if(data->set.max_send_speed) send_timeout_ms = Curl_pgrsLimitWaitTime(&data->progress.ul, data->set.max_send_speed, *nowp); recv_timeout_ms = 0; if(data->set.max_recv_speed) recv_timeout_ms = Curl_pgrsLimitWaitTime(&data->progress.dl, data->set.max_recv_speed, *nowp); if(!send_timeout_ms && !recv_timeout_ms) { multistate(data, MSTATE_PERFORMING); Curl_ratelimit(data, *nowp); /* start performing again right away */ rc = CURLM_CALL_MULTI_PERFORM; } else if(send_timeout_ms >= recv_timeout_ms) Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST); else Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST); } break; case MSTATE_PERFORMING: { char *newurl = NULL; bool retry = FALSE; /* check if over send speed */ send_timeout_ms = 0; if(data->set.max_send_speed) send_timeout_ms = Curl_pgrsLimitWaitTime(&data->progress.ul, data->set.max_send_speed, *nowp); /* check if over recv speed */ recv_timeout_ms = 0; if(data->set.max_recv_speed) recv_timeout_ms = Curl_pgrsLimitWaitTime(&data->progress.dl, data->set.max_recv_speed, *nowp); if(send_timeout_ms || recv_timeout_ms) { Curl_ratelimit(data, *nowp); multistate(data, MSTATE_RATELIMITING); if(send_timeout_ms >= recv_timeout_ms) Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST); else Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST); break; } /* read/write data if it is ready to do so */ result = Curl_sendrecv(data, nowp); if(data->req.done || (result == CURLE_RECV_ERROR)) { /* If CURLE_RECV_ERROR happens early enough, we assume it was a race * condition and the server closed the reused connection exactly when * we wanted to use it, so figure out if that is indeed the case. */ CURLcode ret = Curl_retry_request(data, &newurl); if(!ret) retry = (newurl)?TRUE:FALSE; else if(!result) result = ret; if(retry) { /* if we are to retry, set the result to OK and consider the request as done */ result = CURLE_OK; data->req.done = TRUE; } } else if((CURLE_HTTP2_STREAM == result) && Curl_h2_http_1_1_error(data)) { CURLcode ret = Curl_retry_request(data, &newurl); if(!ret) { infof(data, "Downgrades to HTTP/1.1"); streamclose(data->conn, "Disconnect HTTP/2 for HTTP/1"); data->state.httpwant = CURL_HTTP_VERSION_1_1; /* clear the error message bit too as we ignore the one we got */ data->state.errorbuf = FALSE; if(!newurl) /* typically for HTTP_1_1_REQUIRED error on first flight */ newurl = strdup(data->state.url); /* if we are to retry, set the result to OK and consider the request as done */ retry = TRUE; result = CURLE_OK; data->req.done = TRUE; } else result = ret; } if(result) { /* * The transfer phase returned error, we mark the connection to get * closed to prevent being reused. This is because we cannot possibly * know if the connection is in a good shape or not now. Unless it is * a protocol which uses two "channels" like FTP, as then the error * happened in the data connection. */ if(!(data->conn->handler->flags & PROTOPT_DUAL) && result != CURLE_HTTP2_STREAM) streamclose(data->conn, "Transfer returned error"); multi_posttransfer(data); multi_done(data, result, TRUE); } else if(data->req.done && !Curl_cwriter_is_paused(data)) { /* call this even if the readwrite function returned error */ multi_posttransfer(data); /* When we follow redirects or is set to retry the connection, we must to go back to the CONNECT state */ if(data->req.newurl || retry) { followtype follow = FOLLOW_NONE; if(!retry) { /* if the URL is a follow-location and not just a retried request then figure out the URL here */ free(newurl); newurl = data->req.newurl; data->req.newurl = NULL; follow = FOLLOW_REDIR; } else follow = FOLLOW_RETRY; (void)multi_done(data, CURLE_OK, FALSE); /* multi_done() might return CURLE_GOT_NOTHING */ result = Curl_follow(data, newurl, follow); if(!result) { multistate(data, MSTATE_SETUP); rc = CURLM_CALL_MULTI_PERFORM; } } else { /* after the transfer is done, go DONE */ /* but first check to see if we got a location info even though we are not following redirects */ if(data->req.location) { free(newurl); newurl = data->req.location; data->req.location = NULL; result = Curl_follow(data, newurl, FOLLOW_FAKE); if(result) { stream_error = TRUE; result = multi_done(data, result, TRUE); } } if(!result) { multistate(data, MSTATE_DONE); rc = CURLM_CALL_MULTI_PERFORM; } } } else if(data->state.select_bits && !Curl_xfer_is_blocked(data)) { /* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer will not get stuck on this transfer at the expense of other concurrent transfers */ Curl_expire(data, 0, EXPIRE_RUN_NOW); } free(newurl); break; } case MSTATE_DONE: /* this state is highly transient, so run another loop after this */ rc = CURLM_CALL_MULTI_PERFORM; if(data->conn) { CURLcode res; if(data->conn->bits.multiplex) /* Check if we can move pending requests to connection */ process_pending_handles(multi); /* multiplexing */ /* post-transfer command */ res = multi_done(data, result, FALSE); /* allow a previously set error code take precedence */ if(!result) result = res; } #ifndef CURL_DISABLE_FTP if(data->state.wildcardmatch) { if(data->wildcard->state != CURLWC_DONE) { /* if a wildcard is set and we are not ending -> lets start again with MSTATE_INIT */ multistate(data, MSTATE_INIT); break; } } #endif /* after we have DONE what we are supposed to do, go COMPLETED, and it does not matter what the multi_done() returned! */ multistate(data, MSTATE_COMPLETED); break; case MSTATE_COMPLETED: break; case MSTATE_PENDING: case MSTATE_MSGSENT: /* handles in these states should NOT be in this list */ DEBUGASSERT(0); break; default: return CURLM_INTERNAL_ERROR; } if(data->mstate >= MSTATE_CONNECT && data->mstate < MSTATE_DO && rc != CURLM_CALL_MULTI_PERFORM && !multi_ischanged(multi, false)) { /* We now handle stream timeouts if and only if this will be the last * loop iteration. We only check this on the last iteration to ensure * that if we know we have additional work to do immediately * (i.e. CURLM_CALL_MULTI_PERFORM == TRUE) then we should do that before * declaring the connection timed out as we may almost have a completed * connection. */ multi_handle_timeout(data, nowp, &stream_error, &result, FALSE); } statemachine_end: if(data->mstate < MSTATE_COMPLETED) { if(result) { /* * If an error was returned, and we are not in completed state now, * then we go to completed and consider this transfer aborted. */ /* NOTE: no attempt to disconnect connections must be made in the case blocks above - cleanup happens only here */ /* Check if we can move pending requests to send pipe */ process_pending_handles(multi); /* connection */ if(data->conn) { if(stream_error) { /* Do not attempt to send data over a connection that timed out */ bool dead_connection = result == CURLE_OPERATION_TIMEDOUT; struct connectdata *conn = data->conn; /* This is where we make sure that the conn pointer is reset. We do not have to do this in every case block above where a failure is detected */ Curl_detach_connection(data); /* remove connection from cache */ Curl_conncache_remove_conn(data, conn, TRUE); /* disconnect properly */ Curl_disconnect(data, conn, dead_connection); } } else if(data->mstate == MSTATE_CONNECT) { /* Curl_connect() failed */ multi_posttransfer(data); Curl_pgrsUpdate_nometer(data); } multistate(data, MSTATE_COMPLETED); rc = CURLM_CALL_MULTI_PERFORM; } /* if there is still a connection to use, call the progress function */ else if(data->conn && Curl_pgrsUpdate(data)) { /* aborted due to progress callback return code must close the connection */ result = CURLE_ABORTED_BY_CALLBACK; streamclose(data->conn, "Aborted by callback"); /* if not yet in DONE state, go there, otherwise COMPLETED */ multistate(data, (data->mstate < MSTATE_DONE)? MSTATE_DONE: MSTATE_COMPLETED); rc = CURLM_CALL_MULTI_PERFORM; } } if(MSTATE_COMPLETED == data->mstate) { if(data->set.fmultidone) { /* signal via callback instead */ data->set.fmultidone(data, result); } else { /* now fill in the Curl_message with this info */ msg = &data->msg; msg->extmsg.msg = CURLMSG_DONE; msg->extmsg.easy_handle = data; msg->extmsg.data.result = result; multi_addmsg(multi, msg); DEBUGASSERT(!data->conn); } multistate(data, MSTATE_MSGSENT); /* unlink from the process list */ Curl_node_remove(&data->multi_queue); /* add this handle msgsent list */ Curl_llist_append(&multi->msgsent, data, &data->multi_queue); return CURLM_OK; } } while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE)); data->result = result; return rc; } CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles) { CURLMcode returncode = CURLM_OK; struct Curl_tree *t = NULL; struct curltime now = Curl_now(); struct Curl_llist_node *e; struct Curl_llist_node *n = NULL; SIGPIPE_VARIABLE(pipe_st); if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; sigpipe_init(&pipe_st); for(e = Curl_llist_head(&multi->process); e; e = n) { struct Curl_easy *data = Curl_node_elem(e); CURLMcode result; /* Do the loop and only alter the signal ignore state if the next handle has a different NO_SIGNAL state than the previous */ /* the current node might be unlinked in multi_runsingle(), get the next pointer now */ n = Curl_node_next(e); if(data != multi->conn_cache.closure_handle) { /* connection cache handle is processed below */ sigpipe_apply(data, &pipe_st); result = multi_runsingle(multi, &now, data); if(result) returncode = result; } } sigpipe_apply(multi->conn_cache.closure_handle, &pipe_st); Curl_conncache_multi_perform(multi); sigpipe_restore(&pipe_st); /* * Simply remove all expired timers from the splay since handles are dealt * with unconditionally by this function and curl_multi_timeout() requires * that already passed/handled expire times are removed from the splay. * * It is important that the 'now' value is set at the entry of this function * and not for the current time as it may have ticked a little while since * then and then we risk this loop to remove timers that actually have not * been handled! */ do { multi->timetree = Curl_splaygetbest(now, multi->timetree, &t); if(t) { /* the removed may have another timeout in queue */ struct Curl_easy *data = Curl_splayget(t); if(data->mstate == MSTATE_PENDING) { bool stream_unused; CURLcode result_unused; if(multi_handle_timeout(data, &now, &stream_unused, &result_unused, FALSE)) { infof(data, "PENDING handle timeout"); move_pending_to_connect(multi, data); } } (void)add_next_timeout(now, multi, Curl_splayget(t)); } } while(t); if(running_handles) *running_handles = (int)multi->num_alive; if(CURLM_OK >= returncode) returncode = Curl_update_timer(multi); return returncode; } /* unlink_all_msgsent_handles() moves all nodes back from the msgsent list to the process list */ static void unlink_all_msgsent_handles(struct Curl_multi *multi) { struct Curl_llist_node *e; for(e = Curl_llist_head(&multi->msgsent); e; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); if(data) { DEBUGASSERT(data->mstate == MSTATE_MSGSENT); Curl_node_remove(&data->multi_queue); /* put it into the process list */ Curl_llist_append(&multi->process, data, &data->multi_queue); } } } CURLMcode curl_multi_cleanup(struct Curl_multi *multi) { if(GOOD_MULTI_HANDLE(multi)) { struct Curl_llist_node *e; struct Curl_llist_node *n; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; multi->magic = 0; /* not good anymore */ /* move the pending and msgsent entries back to process so that there is just one list to iterate over */ unlink_all_msgsent_handles(multi); process_pending_handles(multi); /* First remove all remaining easy handles */ for(e = Curl_llist_head(&multi->process); e; e = n) { struct Curl_easy *data = Curl_node_elem(e); if(!GOOD_EASY_HANDLE(data)) return CURLM_BAD_HANDLE; n = Curl_node_next(e); if(!data->state.done && data->conn) /* if DONE was never called for this handle */ (void)multi_done(data, CURLE_OK, TRUE); if(data->dns.hostcachetype == HCACHE_MULTI) { /* clear out the usage of the shared DNS cache */ Curl_hostcache_clean(data, data->dns.hostcache); data->dns.hostcache = NULL; data->dns.hostcachetype = HCACHE_NONE; } /* Clear the pointer to the connection cache */ data->state.conn_cache = NULL; data->multi = NULL; /* clear the association */ #ifdef USE_LIBPSL if(data->psl == &multi->psl) data->psl = NULL; #endif } /* Close all the connections in the connection cache */ Curl_conncache_multi_close_all(multi); sockhash_destroy(&multi->sockhash); Curl_hash_destroy(&multi->proto_hash); Curl_conncache_destroy(&multi->conn_cache); Curl_hash_destroy(&multi->hostcache); Curl_psl_destroy(&multi->psl); #ifdef USE_WINSOCK WSACloseEvent(multi->wsa_event); #else #ifdef ENABLE_WAKEUP wakeup_close(multi->wakeup_pair[0]); #ifndef USE_EVENTFD wakeup_close(multi->wakeup_pair[1]); #endif #endif #endif multi_xfer_bufs_free(multi); free(multi); return CURLM_OK; } return CURLM_BAD_HANDLE; } /* * curl_multi_info_read() * * This function is the primary way for a multi/multi_socket application to * figure out if a transfer has ended. We MUST make this function as fast as * possible as it will be polled frequently and we MUST NOT scan any lists in * here to figure out things. We must scale fine to thousands of handles and * beyond. The current design is fully O(1). */ CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue) { struct Curl_message *msg; *msgs_in_queue = 0; /* default to none */ if(GOOD_MULTI_HANDLE(multi) && !multi->in_callback && Curl_llist_count(&multi->msglist)) { /* there is one or more messages in the list */ struct Curl_llist_node *e; /* extract the head of the list to return */ e = Curl_llist_head(&multi->msglist); msg = Curl_node_elem(e); /* remove the extracted entry */ Curl_node_remove(e); *msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist)); return &msg->extmsg; } return NULL; } /* * singlesocket() checks what sockets we deal with and their "action state" * and if we have a different state in any of those sockets from last time we * call the callback accordingly. */ static CURLMcode singlesocket(struct Curl_multi *multi, struct Curl_easy *data) { struct easy_pollset cur_poll; CURLMcode mresult; /* Fill in the 'current' struct with the state as it is now: what sockets to supervise and for what actions */ multi_getsock(data, &cur_poll); mresult = Curl_multi_pollset_ev(multi, data, &cur_poll, &data->last_poll); if(!mresult) /* Remember for next time */ memcpy(&data->last_poll, &cur_poll, sizeof(cur_poll)); return mresult; } CURLMcode Curl_multi_pollset_ev(struct Curl_multi *multi, struct Curl_easy *data, struct easy_pollset *ps, struct easy_pollset *last_ps) { unsigned int i; struct Curl_sh_entry *entry; curl_socket_t s; int rc; /* We have 0 .. N sockets already and we get to know about the 0 .. M sockets we should have from now on. Detect the differences, remove no longer supervised ones and add new ones */ /* walk over the sockets we got right now */ for(i = 0; i < ps->num; i++) { unsigned char cur_action = ps->actions[i]; unsigned char last_action = 0; int comboaction; s = ps->sockets[i]; /* get it from the hash */ entry = sh_getentry(&multi->sockhash, s); if(entry) { /* check if new for this transfer */ unsigned int j; for(j = 0; j< last_ps->num; j++) { if(s == last_ps->sockets[j]) { last_action = last_ps->actions[j]; break; } } } else { /* this is a socket we did not have before, add it to the hash! */ entry = sh_addentry(&multi->sockhash, s); if(!entry) /* fatal */ return CURLM_OUT_OF_MEMORY; } if(last_action && (last_action != cur_action)) { /* Socket was used already, but different action now */ if(last_action & CURL_POLL_IN) { DEBUGASSERT(entry->readers); entry->readers--; } if(last_action & CURL_POLL_OUT) { DEBUGASSERT(entry->writers); entry->writers--; } if(cur_action & CURL_POLL_IN) { entry->readers++; } if(cur_action & CURL_POLL_OUT) entry->writers++; } else if(!last_action && !Curl_hash_pick(&entry->transfers, (char *)&data, /* hash key */ sizeof(struct Curl_easy *))) { DEBUGASSERT(entry->users < 100000); /* detect weird values */ /* a new transfer using this socket */ entry->users++; if(cur_action & CURL_POLL_IN) entry->readers++; if(cur_action & CURL_POLL_OUT) entry->writers++; /* add 'data' to the transfer hash on this socket! */ if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */ sizeof(struct Curl_easy *), data)) { Curl_hash_destroy(&entry->transfers); return CURLM_OUT_OF_MEMORY; } } comboaction = (entry->writers ? CURL_POLL_OUT : 0) | (entry->readers ? CURL_POLL_IN : 0); /* socket existed before and has the same action set as before */ if(last_action && ((int)entry->action == comboaction)) /* same, continue */ continue; if(multi->socket_cb) { set_in_callback(multi, TRUE); rc = multi->socket_cb(data, s, comboaction, multi->socket_userp, entry->socketp); set_in_callback(multi, FALSE); if(rc == -1) { multi->dead = TRUE; return CURLM_ABORTED_BY_CALLBACK; } } /* store the current action state */ entry->action = (unsigned int)comboaction; } /* Check for last_poll.sockets that no longer appear in ps->sockets. * Need to remove the easy handle from the multi->sockhash->transfers and * remove multi->sockhash entry when this was the last transfer */ for(i = 0; i < last_ps->num; i++) { unsigned int j; bool stillused = FALSE; s = last_ps->sockets[i]; for(j = 0; j < ps->num; j++) { if(s == ps->sockets[j]) { /* this is still supervised */ stillused = TRUE; break; } } if(stillused) continue; entry = sh_getentry(&multi->sockhash, s); /* if this is NULL here, the socket has been closed and notified so already by Curl_multi_closed() */ if(entry) { unsigned char oldactions = last_ps->actions[i]; /* this socket has been removed. Decrease user count */ DEBUGASSERT(entry->users); entry->users--; if(oldactions & CURL_POLL_OUT) entry->writers--; if(oldactions & CURL_POLL_IN) entry->readers--; if(!entry->users) { bool dead = FALSE; if(multi->socket_cb) { set_in_callback(multi, TRUE); rc = multi->socket_cb(data, s, CURL_POLL_REMOVE, multi->socket_userp, entry->socketp); set_in_callback(multi, FALSE); if(rc == -1) dead = TRUE; } sh_delentry(entry, &multi->sockhash, s); if(dead) { multi->dead = TRUE; return CURLM_ABORTED_BY_CALLBACK; } } else { /* still users, but remove this handle as a user of this socket */ if(Curl_hash_delete(&entry->transfers, (char *)&data, sizeof(struct Curl_easy *))) { DEBUGASSERT(NULL); } } } } /* for loop over num */ return CURLM_OK; } CURLcode Curl_updatesocket(struct Curl_easy *data) { if(singlesocket(data->multi, data)) return CURLE_ABORTED_BY_CALLBACK; return CURLE_OK; } /* * Curl_multi_closed() * * Used by the connect code to tell the multi_socket code that one of the * sockets we were using is about to be closed. This function will then * remove it from the sockethash for this handle to make the multi_socket API * behave properly, especially for the case when libcurl will create another * socket again and it gets the same file descriptor number. */ void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s) { if(data) { /* if there is still an easy handle associated with this connection */ struct Curl_multi *multi = data->multi; DEBUGF(infof(data, "Curl_multi_closed, fd=%" CURL_FORMAT_SOCKET_T " multi is %p", s, (void *)multi)); if(multi) { /* this is set if this connection is part of a handle that is added to a multi handle, and only then this is necessary */ struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s); DEBUGF(infof(data, "Curl_multi_closed, fd=%" CURL_FORMAT_SOCKET_T " entry is %p", s, (void *)entry)); if(entry) { int rc = 0; if(multi->socket_cb) { set_in_callback(multi, TRUE); rc = multi->socket_cb(data, s, CURL_POLL_REMOVE, multi->socket_userp, entry->socketp); set_in_callback(multi, FALSE); } /* now remove it from the socket hash */ sh_delentry(entry, &multi->sockhash, s); if(rc == -1) /* This just marks the multi handle as "dead" without returning an error code primarily because this function is used from many places where propagating an error back is tricky. */ multi->dead = TRUE; } } } } /* * add_next_timeout() * * Each Curl_easy has a list of timeouts. The add_next_timeout() is called * when it has just been removed from the splay tree because the timeout has * expired. This function is then to advance in the list to pick the next * timeout to use (skip the already expired ones) and add this node back to * the splay tree again. * * The splay tree only has each sessionhandle as a single node and the nearest * timeout is used to sort it on. */ static CURLMcode add_next_timeout(struct curltime now, struct Curl_multi *multi, struct Curl_easy *d) { struct curltime *tv = &d->state.expiretime; struct Curl_llist *list = &d->state.timeoutlist; struct Curl_llist_node *e; /* move over the timeout list for this specific handle and remove all timeouts that are now passed tense and store the next pending timeout in *tv */ for(e = Curl_llist_head(list); e;) { struct Curl_llist_node *n = Curl_node_next(e); struct time_node *node = Curl_node_elem(e); timediff_t diff = Curl_timediff_us(node->time, now); if(diff <= 0) /* remove outdated entry */ Curl_node_remove(e); else /* the list is sorted so get out on the first mismatch */ break; e = n; } e = Curl_llist_head(list); if(!e) { /* clear the expire times within the handles that we remove from the splay tree */ tv->tv_sec = 0; tv->tv_usec = 0; } else { struct time_node *node = Curl_node_elem(e); /* copy the first entry to 'tv' */ memcpy(tv, &node->time, sizeof(*tv)); /* Insert this node again into the splay. Keep the timer in the list in case we need to recompute future timers. */ multi->timetree = Curl_splayinsert(*tv, multi->timetree, &d->state.timenode); } return CURLM_OK; } struct multi_run_ctx { struct Curl_multi *multi; struct curltime now; size_t run_xfers; SIGPIPE_MEMBER(pipe_st); bool run_conn_cache; }; static CURLMcode multi_run_expired(struct multi_run_ctx *mrc) { struct Curl_multi *multi = mrc->multi; struct Curl_easy *data = NULL; struct Curl_tree *t = NULL; CURLMcode result = CURLM_OK; /* * The loop following here will go on as long as there are expire-times left * to process (compared to mrc->now) in the splay and 'data' will be * re-assigned for every expired handle we deal with. */ while(1) { /* Check if there is one (more) expired timer to deal with! This function extracts a matching node if there is one */ multi->timetree = Curl_splaygetbest(mrc->now, multi->timetree, &t); if(!t) goto out; data = Curl_splayget(t); /* assign this for next loop */ if(!data) continue; (void)add_next_timeout(mrc->now, multi, data); if(data == multi->conn_cache.closure_handle) { mrc->run_conn_cache = TRUE; continue; } mrc->run_xfers++; sigpipe_apply(data, &mrc->pipe_st); result = multi_runsingle(multi, &mrc->now, data); if(CURLM_OK >= result) { /* get the socket(s) and check if the state has been changed since last */ result = singlesocket(multi, data); if(result) goto out; } } out: return result; } static CURLMcode multi_socket(struct Curl_multi *multi, bool checkall, curl_socket_t s, int ev_bitmask, int *running_handles) { CURLMcode result = CURLM_OK; struct Curl_easy *data = NULL; struct multi_run_ctx mrc; (void)ev_bitmask; memset(&mrc, 0, sizeof(mrc)); mrc.multi = multi; mrc.now = Curl_now(); sigpipe_init(&mrc.pipe_st); if(checkall) { struct Curl_llist_node *e; /* *perform() deals with running_handles on its own */ result = curl_multi_perform(multi, running_handles); /* walk through each easy handle and do the socket state change magic and callbacks */ if(result != CURLM_BAD_HANDLE) { for(e = Curl_llist_head(&multi->process); e && !result; e = Curl_node_next(e)) { result = singlesocket(multi, Curl_node_elem(e)); } } mrc.run_conn_cache = TRUE; goto out; } if(s != CURL_SOCKET_TIMEOUT) { struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s); if(!entry) { /* Unmatched socket, we cannot act on it but we ignore this fact. In real-world tests it has been proved that libevent can in fact give the application actions even though the socket was just previously asked to get removed, so thus we better survive stray socket actions and just move on. */ /* The socket might come from a connection that is being shut down * by the multi's conncache. */ Curl_conncache_multi_socket(multi, s, ev_bitmask); } else { struct Curl_hash_iterator iter; struct Curl_hash_element *he; /* the socket can be shared by many transfers, iterate */ Curl_hash_start_iterate(&entry->transfers, &iter); for(he = Curl_hash_next_element(&iter); he; he = Curl_hash_next_element(&iter)) { data = (struct Curl_easy *)he->ptr; DEBUGASSERT(data); DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER); if(data == multi->conn_cache.closure_handle) mrc.run_conn_cache = TRUE; else { /* Expire with out current now, so we will get it below when * asking the splaytree for expired transfers. */ Curl_expire_ex(data, &mrc.now, 0, EXPIRE_RUN_NOW); } } } } result = multi_run_expired(&mrc); if(result) goto out; if(mrc.run_xfers) { /* Running transfers takes time. With a new timestamp, we might catch * other expires which are due now. Instead of telling the application * to set a 0 timeout and call us again, we run them here. * Do that only once or it might be unfair to transfers on other * sockets. */ mrc.now = Curl_now(); result = multi_run_expired(&mrc); } out: if(mrc.run_conn_cache) { sigpipe_apply(multi->conn_cache.closure_handle, &mrc.pipe_st); Curl_conncache_multi_perform(multi); } sigpipe_restore(&mrc.pipe_st); if(running_handles) *running_handles = (int)multi->num_alive; if(CURLM_OK >= result) result = Curl_update_timer(multi); return result; } #undef curl_multi_setopt CURLMcode curl_multi_setopt(struct Curl_multi *multi, CURLMoption option, ...) { CURLMcode res = CURLM_OK; va_list param; unsigned long uarg; if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; va_start(param, option); switch(option) { case CURLMOPT_SOCKETFUNCTION: multi->socket_cb = va_arg(param, curl_socket_callback); break; case CURLMOPT_SOCKETDATA: multi->socket_userp = va_arg(param, void *); break; case CURLMOPT_PUSHFUNCTION: multi->push_cb = va_arg(param, curl_push_callback); break; case CURLMOPT_PUSHDATA: multi->push_userp = va_arg(param, void *); break; case CURLMOPT_PIPELINING: multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX ? 1 : 0; break; case CURLMOPT_TIMERFUNCTION: multi->timer_cb = va_arg(param, curl_multi_timer_callback); break; case CURLMOPT_TIMERDATA: multi->timer_userp = va_arg(param, void *); break; case CURLMOPT_MAXCONNECTS: uarg = va_arg(param, unsigned long); if(uarg <= UINT_MAX) multi->maxconnects = (unsigned int)uarg; break; case CURLMOPT_MAX_HOST_CONNECTIONS: multi->max_host_connections = va_arg(param, long); break; case CURLMOPT_MAX_TOTAL_CONNECTIONS: multi->max_total_connections = va_arg(param, long); /* for now, let this also decide the max number of connections * in shutdown handling */ multi->max_shutdown_connections = va_arg(param, long); break; /* options formerly used for pipelining */ case CURLMOPT_MAX_PIPELINE_LENGTH: break; case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE: break; case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE: break; case CURLMOPT_PIPELINING_SITE_BL: break; case CURLMOPT_PIPELINING_SERVER_BL: break; case CURLMOPT_MAX_CONCURRENT_STREAMS: { long streams = va_arg(param, long); if((streams < 1) || (streams > INT_MAX)) streams = 100; multi->max_concurrent_streams = (unsigned int)streams; } break; default: res = CURLM_UNKNOWN_OPTION; break; } va_end(param); return res; } /* we define curl_multi_socket() in the public multi.h header */ #undef curl_multi_socket CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s, int *running_handles) { if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; return multi_socket(multi, FALSE, s, 0, running_handles); } CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s, int ev_bitmask, int *running_handles) { if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; return multi_socket(multi, FALSE, s, ev_bitmask, running_handles); } CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles) { if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; return multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles); } static CURLMcode multi_timeout(struct Curl_multi *multi, struct curltime *expire_time, long *timeout_ms) { static const struct curltime tv_zero = {0, 0}; if(multi->dead) { *timeout_ms = 0; return CURLM_OK; } if(multi->timetree) { /* we have a tree of expire times */ struct curltime now = Curl_now(); /* splay the lowest to the bottom */ multi->timetree = Curl_splay(tv_zero, multi->timetree); /* this will not return NULL from a non-emtpy tree, but some compilers * are not convinced of that. Analyzers are hard. */ *expire_time = multi->timetree? multi->timetree->key : tv_zero; /* 'multi->timetree' will be non-NULL here but the compilers sometimes yell at us if we assume so */ if(multi->timetree && Curl_timediff_us(multi->timetree->key, now) > 0) { /* some time left before expiration */ timediff_t diff = Curl_timediff_ceil(multi->timetree->key, now); /* this should be safe even on 32-bit archs, as we do not use that overly long timeouts */ *timeout_ms = (long)diff; } else { /* 0 means immediately */ *timeout_ms = 0; } } else { *expire_time = tv_zero; *timeout_ms = -1; } return CURLM_OK; } CURLMcode curl_multi_timeout(struct Curl_multi *multi, long *timeout_ms) { struct curltime expire_time; /* First, make some basic checks that the CURLM handle is a good handle */ if(!GOOD_MULTI_HANDLE(multi)) return CURLM_BAD_HANDLE; if(multi->in_callback) return CURLM_RECURSIVE_API_CALL; return multi_timeout(multi, &expire_time, timeout_ms); } #define DEBUG_UPDATE_TIMER 0 /* * Tell the application it should update its timers, if it subscribes to the * update timer callback. */ CURLMcode Curl_update_timer(struct Curl_multi *multi) { struct curltime expire_ts; long timeout_ms; int rc; bool set_value = FALSE; if(!multi->timer_cb || multi->dead) return CURLM_OK; if(multi_timeout(multi, &expire_ts, &timeout_ms)) { return CURLM_OK; } if(timeout_ms < 0 && multi->last_timeout_ms < 0) { #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), still no timeout, no change\n"); #endif } else if(timeout_ms < 0) { /* there is no timeout now but there was one previously */ #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), remove timeout, " " last_timeout=%ldms\n", multi->last_timeout_ms); #endif timeout_ms = -1; /* normalize */ set_value = TRUE; } else if(multi->last_timeout_ms < 0) { #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), had no timeout, set now\n"); #endif set_value = TRUE; } else if(Curl_timediff_us(multi->last_expire_ts, expire_ts)) { /* We had a timeout before and have one now, the absolute timestamp * differs. The relative timeout_ms may be the same, but the starting * point differs. Let the application restart its timer. */ #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), expire timestamp changed\n"); #endif set_value = TRUE; } else { /* We have same expire time as previously. Our relative 'timeout_ms' * may be different now, but the application has the timer running * and we do not to tell it to start this again. */ #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), same expire timestamp, no change\n"); #endif } if(set_value) { #if DEBUG_UPDATE_TIMER fprintf(stderr, "Curl_update_timer(), set timeout %ldms\n", timeout_ms); #endif multi->last_expire_ts = expire_ts; multi->last_timeout_ms = timeout_ms; set_in_callback(multi, TRUE); rc = multi->timer_cb(multi, timeout_ms, multi->timer_userp); set_in_callback(multi, FALSE); if(rc == -1) { multi->dead = TRUE; return CURLM_ABORTED_BY_CALLBACK; } } return CURLM_OK; } /* * multi_deltimeout() * * Remove a given timestamp from the list of timeouts. */ static void multi_deltimeout(struct Curl_easy *data, expire_id eid) { struct Curl_llist_node *e; struct Curl_llist *timeoutlist = &data->state.timeoutlist; /* find and remove the specific node from the list */ for(e = Curl_llist_head(timeoutlist); e; e = Curl_node_next(e)) { struct time_node *n = Curl_node_elem(e); if(n->eid == eid) { Curl_node_remove(e); return; } } } /* * multi_addtimeout() * * Add a timestamp to the list of timeouts. Keep the list sorted so that head * of list is always the timeout nearest in time. * */ static CURLMcode multi_addtimeout(struct Curl_easy *data, struct curltime *stamp, expire_id eid) { struct Curl_llist_node *e; struct time_node *node; struct Curl_llist_node *prev = NULL; size_t n; struct Curl_llist *timeoutlist = &data->state.timeoutlist; node = &data->state.expires[eid]; /* copy the timestamp and id */ memcpy(&node->time, stamp, sizeof(*stamp)); node->eid = eid; /* also marks it as in use */ n = Curl_llist_count(timeoutlist); if(n) { /* find the correct spot in the list */ for(e = Curl_llist_head(timeoutlist); e; e = Curl_node_next(e)) { struct time_node *check = Curl_node_elem(e); timediff_t diff = Curl_timediff(check->time, node->time); if(diff > 0) break; prev = e; } } /* else this is the first timeout on the list */ Curl_llist_insert_next(timeoutlist, prev, node, &node->list); return CURLM_OK; } /* * Curl_expire() * * given a number of milliseconds from now to use to set the 'act before * this'-time for the transfer, to be extracted by curl_multi_timeout() * * The timeout will be added to a queue of timeouts if it defines a moment in * time that is later than the current head of queue. * * Expire replaces a former timeout using the same id if already set. */ static void Curl_expire_ex(struct Curl_easy *data, const struct curltime *nowp, timediff_t milli, expire_id id) { struct Curl_multi *multi = data->multi; struct curltime *curr_expire = &data->state.expiretime; struct curltime set; /* this is only interesting while there is still an associated multi struct remaining! */ if(!multi) return; DEBUGASSERT(id < EXPIRE_LAST); set = *nowp; set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bits conversion */ set.tv_usec += (int)(milli%1000)*1000; if(set.tv_usec >= 1000000) { set.tv_sec++; set.tv_usec -= 1000000; } /* Remove any timer with the same id just in case. */ multi_deltimeout(data, id); /* Add it to the timer list. It must stay in the list until it has expired in case we need to recompute the minimum timer later. */ multi_addtimeout(data, &set, id); if(curr_expire->tv_sec || curr_expire->tv_usec) { /* This means that the struct is added as a node in the splay tree. Compare if the new time is earlier, and only remove-old/add-new if it is. */ timediff_t diff = Curl_timediff(set, *curr_expire); int rc; if(diff > 0) { /* The current splay tree entry is sooner than this new expiry time. We do not need to update our splay tree entry. */ return; } /* Since this is an updated time, we must remove the previous entry from the splay tree first and then re-add the new value */ rc = Curl_splayremove(multi->timetree, &data->state.timenode, &multi->timetree); if(rc) infof(data, "Internal error removing splay node = %d", rc); } /* Indicate that we are in the splay tree and insert the new timer expiry value since it is our local minimum. */ *curr_expire = set; Curl_splayset(&data->state.timenode, data); multi->timetree = Curl_splayinsert(*curr_expire, multi->timetree, &data->state.timenode); } void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id) { struct curltime now = Curl_now(); Curl_expire_ex(data, &now, milli, id); } /* * Curl_expire_done() * * Removes the expire timer. Marks it as done. * */ void Curl_expire_done(struct Curl_easy *data, expire_id id) { /* remove the timer, if there */ multi_deltimeout(data, id); } /* * Curl_expire_clear() * * Clear ALL timeout values for this handle. */ bool Curl_expire_clear(struct Curl_easy *data) { struct Curl_multi *multi = data->multi; struct curltime *nowp = &data->state.expiretime; /* this is only interesting while there is still an associated multi struct remaining! */ if(!multi) return FALSE; if(nowp->tv_sec || nowp->tv_usec) { /* Since this is an cleared time, we must remove the previous entry from the splay tree */ struct Curl_llist *list = &data->state.timeoutlist; int rc; rc = Curl_splayremove(multi->timetree, &data->state.timenode, &multi->timetree); if(rc) infof(data, "Internal error clearing splay node = %d", rc); /* clear the timeout list too */ Curl_llist_destroy(list, NULL); #ifdef DEBUGBUILD infof(data, "Expire cleared"); #endif nowp->tv_sec = 0; nowp->tv_usec = 0; return TRUE; } return FALSE; } CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s, void *hashp) { struct Curl_sh_entry *there = NULL; there = sh_getentry(&multi->sockhash, s); if(!there) return CURLM_BAD_SOCKET; there->socketp = hashp; return CURLM_OK; } size_t Curl_multi_max_host_connections(struct Curl_multi *multi) { return multi ? (size_t)multi->max_host_connections : 0; } size_t Curl_multi_max_total_connections(struct Curl_multi *multi) { return multi ? (size_t)multi->max_total_connections : 0; } /* * When information about a connection has appeared, call this! */ void Curl_multiuse_state(struct Curl_easy *data, int bundlestate) /* use BUNDLE_* defines */ { struct connectdata *conn; DEBUGASSERT(data); DEBUGASSERT(data->multi); conn = data->conn; DEBUGASSERT(conn); DEBUGASSERT(conn->bundle); conn->bundle->multiuse = bundlestate; process_pending_handles(data->multi); } static void move_pending_to_connect(struct Curl_multi *multi, struct Curl_easy *data) { DEBUGASSERT(data->mstate == MSTATE_PENDING); /* Remove this node from the pending list */ Curl_node_remove(&data->multi_queue); /* put it into the process list */ Curl_llist_append(&multi->process, data, &data->multi_queue); multistate(data, MSTATE_CONNECT); /* Make sure that the handle will be processed soonish. */ Curl_expire(data, 0, EXPIRE_RUN_NOW); } /* process_pending_handles() moves a handle from PENDING back into the process list and change state to CONNECT. We do not move all transfers because that can be a significant amount. Since this is tried every now and then doing too many too often becomes a performance problem. When there is a change for connection limits like max host connections etc, this likely only allows one new transfer. When there is a pipewait change, it can potentially allow hundreds of new transfers. We could consider an improvement where we store the queue reason and allow more pipewait rechecks than others. */ static void process_pending_handles(struct Curl_multi *multi) { struct Curl_llist_node *e = Curl_llist_head(&multi->pending); if(e) { struct Curl_easy *data = Curl_node_elem(e); move_pending_to_connect(multi, data); } } void Curl_set_in_callback(struct Curl_easy *data, bool value) { if(data && data->multi) data->multi->in_callback = value; } bool Curl_is_in_callback(struct Curl_easy *data) { return (data && data->multi && data->multi->in_callback); } unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi) { DEBUGASSERT(multi); return multi->max_concurrent_streams; } struct Curl_easy **curl_multi_get_handles(struct Curl_multi *multi) { struct Curl_easy **a = malloc(sizeof(struct Curl_easy *) * (multi->num_easy + 1)); if(a) { unsigned int i = 0; struct Curl_llist_node *e; for(e = Curl_llist_head(&multi->process); e; e = Curl_node_next(e)) { struct Curl_easy *data = Curl_node_elem(e); DEBUGASSERT(i < multi->num_easy); if(!data->state.internal) a[i++] = data; } a[i] = NULL; /* last entry is a NULL */ } return a; } CURLcode Curl_multi_xfer_buf_borrow(struct Curl_easy *data, char **pbuf, size_t *pbuflen) { DEBUGASSERT(data); DEBUGASSERT(data->multi); *pbuf = NULL; *pbuflen = 0; if(!data->multi) { failf(data, "transfer has no multi handle"); return CURLE_FAILED_INIT; } if(!data->set.buffer_size) { failf(data, "transfer buffer size is 0"); return CURLE_FAILED_INIT; } if(data->multi->xfer_buf_borrowed) { failf(data, "attempt to borrow xfer_buf when already borrowed"); return CURLE_AGAIN; } if(data->multi->xfer_buf && data->set.buffer_size > data->multi->xfer_buf_len) { /* not large enough, get a new one */ free(data->multi->xfer_buf); data->multi->xfer_buf = NULL; data->multi->xfer_buf_len = 0; } if(!data->multi->xfer_buf) { data->multi->xfer_buf = malloc((size_t)data->set.buffer_size); if(!data->multi->xfer_buf) { failf(data, "could not allocate xfer_buf of %zu bytes", (size_t)data->set.buffer_size); return CURLE_OUT_OF_MEMORY; } data->multi->xfer_buf_len = data->set.buffer_size; } data->multi->xfer_buf_borrowed = TRUE; *pbuf = data->multi->xfer_buf; *pbuflen = data->multi->xfer_buf_len; return CURLE_OK; } void Curl_multi_xfer_buf_release(struct Curl_easy *data, char *buf) { (void)buf; DEBUGASSERT(data); DEBUGASSERT(data->multi); DEBUGASSERT(!buf || data->multi->xfer_buf == buf); data->multi->xfer_buf_borrowed = FALSE; } CURLcode Curl_multi_xfer_ulbuf_borrow(struct Curl_easy *data, char **pbuf, size_t *pbuflen) { DEBUGASSERT(data); DEBUGASSERT(data->multi); *pbuf = NULL; *pbuflen = 0; if(!data->multi) { failf(data, "transfer has no multi handle"); return CURLE_FAILED_INIT; } if(!data->set.upload_buffer_size) { failf(data, "transfer upload buffer size is 0"); return CURLE_FAILED_INIT; } if(data->multi->xfer_ulbuf_borrowed) { failf(data, "attempt to borrow xfer_ulbuf when already borrowed"); return CURLE_AGAIN; } if(data->multi->xfer_ulbuf && data->set.upload_buffer_size > data->multi->xfer_ulbuf_len) { /* not large enough, get a new one */ free(data->multi->xfer_ulbuf); data->multi->xfer_ulbuf = NULL; data->multi->xfer_ulbuf_len = 0; } if(!data->multi->xfer_ulbuf) { data->multi->xfer_ulbuf = malloc((size_t)data->set.upload_buffer_size); if(!data->multi->xfer_ulbuf) { failf(data, "could not allocate xfer_ulbuf of %zu bytes", (size_t)data->set.upload_buffer_size); return CURLE_OUT_OF_MEMORY; } data->multi->xfer_ulbuf_len = data->set.upload_buffer_size; } data->multi->xfer_ulbuf_borrowed = TRUE; *pbuf = data->multi->xfer_ulbuf; *pbuflen = data->multi->xfer_ulbuf_len; return CURLE_OK; } void Curl_multi_xfer_ulbuf_release(struct Curl_easy *data, char *buf) { (void)buf; DEBUGASSERT(data); DEBUGASSERT(data->multi); DEBUGASSERT(!buf || data->multi->xfer_ulbuf == buf); data->multi->xfer_ulbuf_borrowed = FALSE; } static void multi_xfer_bufs_free(struct Curl_multi *multi) { DEBUGASSERT(multi); Curl_safefree(multi->xfer_buf); multi->xfer_buf_len = 0; multi->xfer_buf_borrowed = FALSE; Curl_safefree(multi->xfer_ulbuf); multi->xfer_ulbuf_len = 0; multi->xfer_ulbuf_borrowed = FALSE; } struct Curl_easy *Curl_multi_get_handle(struct Curl_multi *multi, curl_off_t mid) { if(mid >= 0) { struct Curl_easy *data; struct Curl_llist_node *e; for(e = Curl_llist_head(&multi->process); e; e = Curl_node_next(e)) { data = Curl_node_elem(e); if(data->mid == mid) return data; } /* may be in msgsent queue */ for(e = Curl_llist_head(&multi->msgsent); e; e = Curl_node_next(e)) { data = Curl_node_elem(e); if(data->mid == mid) return data; } /* may be in pending queue */ for(e = Curl_llist_head(&multi->pending); e; e = Curl_node_next(e)) { data = Curl_node_elem(e); if(data->mid == mid) return data; } } return NULL; }