curl/lib/vtls/bearssl.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1213 lines
38 KiB
C
Raw Normal View History

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Michael Forney, <mforney@mforney.org>
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
2020-11-04 21:02:01 +08:00
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curl_setup.h"
#ifdef USE_BEARSSL
#include <bearssl.h>
#include "bearssl.h"
#include "urldata.h"
#include "sendf.h"
#include "inet_pton.h"
#include "vtls.h"
#include "vtls_int.h"
#include "connect.h"
#include "select.h"
#include "multiif.h"
#include "curl_printf.h"
#include "strcase.h"
/* The last #include files should be: */
#include "curl_memory.h"
#include "memdebug.h"
struct x509_context {
const br_x509_class *vtable;
br_x509_minimal_context minimal;
br_x509_decoder_context decoder;
bool verifyhost;
bool verifypeer;
int cert_num;
};
struct ssl_backend_data {
br_ssl_client_context ctx;
struct x509_context x509;
unsigned char buf[BR_SSL_BUFSIZE_BIDI];
br_x509_trust_anchor *anchors;
size_t anchors_len;
const char *protocols[2];
/* SSL client context is active */
bool active;
/* size of pending write, yet to be flushed */
size_t pending_write;
};
struct cafile_parser {
CURLcode err;
bool in_cert;
br_x509_decoder_context xc;
/* array of trust anchors loaded from CAfile */
br_x509_trust_anchor *anchors;
size_t anchors_len;
/* buffer for DN data */
unsigned char dn[1024];
size_t dn_len;
};
#define CAFILE_SOURCE_PATH 1
#define CAFILE_SOURCE_BLOB 2
struct cafile_source {
2022-09-21 16:32:54 +08:00
int type;
const char *data;
size_t len;
};
static void append_dn(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->err != CURLE_OK || !ca->in_cert)
return;
if(sizeof(ca->dn) - ca->dn_len < len) {
ca->err = CURLE_FAILED_INIT;
return;
}
memcpy(ca->dn + ca->dn_len, buf, len);
ca->dn_len += len;
}
static void x509_push(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->in_cert)
br_x509_decoder_push(&ca->xc, buf, len);
}
static CURLcode load_cafile(struct cafile_source *source,
br_x509_trust_anchor **anchors,
size_t *anchors_len)
{
struct cafile_parser ca;
br_pem_decoder_context pc;
br_x509_trust_anchor *ta;
size_t ta_size;
br_x509_trust_anchor *new_anchors;
size_t new_anchors_len;
br_x509_pkey *pkey;
FILE *fp = 0;
unsigned char buf[BUFSIZ];
const unsigned char *p;
const char *name;
size_t n, i, pushed;
DEBUGASSERT(source->type == CAFILE_SOURCE_PATH
|| source->type == CAFILE_SOURCE_BLOB);
if(source->type == CAFILE_SOURCE_PATH) {
fp = fopen(source->data, "rb");
if(!fp)
return CURLE_SSL_CACERT_BADFILE;
}
if(source->type == CAFILE_SOURCE_BLOB && source->len > (size_t)INT_MAX)
return CURLE_SSL_CACERT_BADFILE;
ca.err = CURLE_OK;
ca.in_cert = FALSE;
ca.anchors = NULL;
ca.anchors_len = 0;
br_pem_decoder_init(&pc);
br_pem_decoder_setdest(&pc, x509_push, &ca);
do {
if(source->type == CAFILE_SOURCE_PATH) {
n = fread(buf, 1, sizeof(buf), fp);
if(n == 0)
break;
p = buf;
}
else if(source->type == CAFILE_SOURCE_BLOB) {
n = source->len;
p = (unsigned char *) source->data;
}
while(n) {
pushed = br_pem_decoder_push(&pc, p, n);
if(ca.err)
goto fail;
p += pushed;
n -= pushed;
switch(br_pem_decoder_event(&pc)) {
case 0:
break;
case BR_PEM_BEGIN_OBJ:
name = br_pem_decoder_name(&pc);
if(strcmp(name, "CERTIFICATE") && strcmp(name, "X509 CERTIFICATE"))
break;
br_x509_decoder_init(&ca.xc, append_dn, &ca);
ca.in_cert = TRUE;
ca.dn_len = 0;
break;
case BR_PEM_END_OBJ:
if(!ca.in_cert)
break;
ca.in_cert = FALSE;
if(br_x509_decoder_last_error(&ca.xc)) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
/* add trust anchor */
if(ca.anchors_len == SIZE_MAX / sizeof(ca.anchors[0])) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
new_anchors_len = ca.anchors_len + 1;
new_anchors = realloc(ca.anchors,
new_anchors_len * sizeof(ca.anchors[0]));
if(!new_anchors) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
ca.anchors = new_anchors;
ca.anchors_len = new_anchors_len;
ta = &ca.anchors[ca.anchors_len - 1];
ta->dn.data = NULL;
ta->flags = 0;
if(br_x509_decoder_isCA(&ca.xc))
ta->flags |= BR_X509_TA_CA;
pkey = br_x509_decoder_get_pkey(&ca.xc);
if(!pkey) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
ta->pkey = *pkey;
/* calculate space needed for trust anchor data */
ta_size = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta_size += pkey->key.rsa.nlen + pkey->key.rsa.elen;
break;
case BR_KEYTYPE_EC:
ta_size += pkey->key.ec.qlen;
break;
default:
ca.err = CURLE_FAILED_INIT;
goto fail;
}
/* fill in trust anchor DN and public key data */
ta->dn.data = malloc(ta_size);
if(!ta->dn.data) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
memcpy(ta->dn.data, ca.dn, ca.dn_len);
ta->dn.len = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta->pkey.key.rsa.n = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.rsa.n, pkey->key.rsa.n, pkey->key.rsa.nlen);
ta->pkey.key.rsa.e = ta->pkey.key.rsa.n + ta->pkey.key.rsa.nlen;
memcpy(ta->pkey.key.rsa.e, pkey->key.rsa.e, pkey->key.rsa.elen);
break;
case BR_KEYTYPE_EC:
ta->pkey.key.ec.q = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.ec.q, pkey->key.ec.q, pkey->key.ec.qlen);
break;
}
break;
default:
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
}
} while(source->type != CAFILE_SOURCE_BLOB);
if(fp && ferror(fp))
ca.err = CURLE_READ_ERROR;
else if(ca.in_cert)
ca.err = CURLE_SSL_CACERT_BADFILE;
fail:
if(fp)
fclose(fp);
if(ca.err == CURLE_OK) {
*anchors = ca.anchors;
*anchors_len = ca.anchors_len;
}
else {
for(i = 0; i < ca.anchors_len; ++i)
free(ca.anchors[i].dn.data);
free(ca.anchors);
}
return ca.err;
}
static void x509_start_chain(const br_x509_class **ctx,
const char *server_name)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num = 0;
return;
}
if(!x509->verifyhost)
server_name = NULL;
x509->minimal.vtable->start_chain(&x509->minimal.vtable, server_name);
}
static void x509_start_cert(const br_x509_class **ctx, uint32_t length)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Only decode the first cert in the chain to obtain the public key */
if(x509->cert_num == 0)
br_x509_decoder_init(&x509->decoder, NULL, NULL);
return;
}
x509->minimal.vtable->start_cert(&x509->minimal.vtable, length);
}
static void x509_append(const br_x509_class **ctx, const unsigned char *buf,
size_t len)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
if(x509->cert_num == 0)
br_x509_decoder_push(&x509->decoder, buf, len);
return;
}
x509->minimal.vtable->append(&x509->minimal.vtable, buf, len);
}
static void x509_end_cert(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
x509->cert_num++;
return;
}
x509->minimal.vtable->end_cert(&x509->minimal.vtable);
}
static unsigned x509_end_chain(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
return br_x509_decoder_last_error(&x509->decoder);
}
return x509->minimal.vtable->end_chain(&x509->minimal.vtable);
}
static const br_x509_pkey *x509_get_pkey(const br_x509_class *const *ctx,
unsigned *usages)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifypeer) {
/* Nothing in the chain is verified, just return the public key of the
first certificate and allow its usage for both TLS_RSA_* and
TLS_ECDHE_* */
if(usages)
*usages = BR_KEYTYPE_KEYX | BR_KEYTYPE_SIGN;
return br_x509_decoder_get_pkey(&x509->decoder);
}
return x509->minimal.vtable->get_pkey(&x509->minimal.vtable, usages);
}
static const br_x509_class x509_vtable = {
sizeof(struct x509_context),
x509_start_chain,
x509_start_cert,
x509_append,
x509_end_cert,
x509_end_chain,
x509_get_pkey
};
struct st_cipher {
const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */
const char *alias_name; /* Alias name is the same as OpenSSL cipher name */
uint16_t num; /* BearSSL cipher suite */
};
/* Macro to initialize st_cipher data structure */
#define CIPHER_DEF(num, alias) { #num, alias, BR_##num }
static const struct st_cipher ciphertable[] = {
/* RFC 2246 TLS 1.0 */
CIPHER_DEF(TLS_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */
"DES-CBC3-SHA"),
/* RFC 3268 TLS 1.0 AES */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */
"AES128-SHA"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */
"AES256-SHA"),
/* RFC 5246 TLS 1.2 */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */
"AES128-SHA256"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */
"AES256-SHA256"),
/* RFC 5288 TLS 1.2 AES GCM */
CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */
"AES128-GCM-SHA256"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */
"AES256-GCM-SHA384"),
/* RFC 4492 TLS 1.0 ECC */
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */
"ECDH-ECDSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */
"ECDH-ECDSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */
"ECDH-ECDSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */
"ECDHE-ECDSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */
"ECDHE-ECDSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */
"ECDHE-ECDSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */
"ECDH-RSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */
"ECDH-RSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */
"ECDH-RSA-AES256-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */
"ECDHE-RSA-DES-CBC3-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */
"ECDHE-RSA-AES128-SHA"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */
"ECDHE-RSA-AES256-SHA"),
/* RFC 5289 TLS 1.2 ECC HMAC SHA256/384 */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */
"ECDHE-ECDSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */
"ECDHE-ECDSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */
"ECDH-ECDSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */
"ECDH-ECDSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */
"ECDHE-RSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */
"ECDHE-RSA-AES256-SHA384"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */
"ECDH-RSA-AES128-SHA256"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */
"ECDH-RSA-AES256-SHA384"),
/* RFC 5289 TLS 1.2 GCM */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */
"ECDHE-ECDSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */
"ECDHE-ECDSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */
"ECDH-ECDSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */
"ECDH-ECDSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */
"ECDHE-RSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */
"ECDHE-RSA-AES256-GCM-SHA384"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */
"ECDH-RSA-AES128-GCM-SHA256"),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */
"ECDH-RSA-AES256-GCM-SHA384"),
#ifdef BR_TLS_RSA_WITH_AES_128_CCM
/* RFC 6655 TLS 1.2 CCM
Supported since BearSSL 0.6 */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM, /* 0xC09C */
"AES128-CCM"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM, /* 0xC09D */
"AES256-CCM"),
CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM_8, /* 0xC0A0 */
"AES128-CCM8"),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM_8, /* 0xC0A1 */
"AES256-CCM8"),
/* RFC 7251 TLS 1.2 ECC CCM
Supported since BearSSL 0.6 */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM, /* 0xC0AC */
"ECDHE-ECDSA-AES128-CCM"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM, /* 0xC0AD */
"ECDHE-ECDSA-AES256-CCM"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, /* 0xC0AE */
"ECDHE-ECDSA-AES128-CCM8"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, /* 0xC0AF */
"ECDHE-ECDSA-AES256-CCM8"),
#endif
/* RFC 7905 TLS 1.2 ChaCha20-Poly1305
Supported since BearSSL 0.2 */
CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */
"ECDHE-RSA-CHACHA20-POLY1305"),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */
"ECDHE-ECDSA-CHACHA20-POLY1305"),
};
#define NUM_OF_CIPHERS (sizeof(ciphertable) / sizeof(ciphertable[0]))
#define CIPHER_NAME_BUF_LEN 64
static bool is_separator(char c)
{
/* Return whether character is a cipher list separator. */
switch(c) {
case ' ':
case '\t':
case ':':
case ',':
case ';':
return true;
}
return false;
}
static CURLcode bearssl_set_selected_ciphers(struct Curl_easy *data,
br_ssl_engine_context *ssl_eng,
const char *ciphers)
{
uint16_t selected_ciphers[NUM_OF_CIPHERS];
size_t selected_count = 0;
char cipher_name[CIPHER_NAME_BUF_LEN];
const char *cipher_start = ciphers;
const char *cipher_end;
size_t i, j;
if(!cipher_start)
return CURLE_SSL_CIPHER;
while(true) {
/* Extract the next cipher name from the ciphers string */
while(is_separator(*cipher_start))
++cipher_start;
if(*cipher_start == '\0')
break;
cipher_end = cipher_start;
while(*cipher_end != '\0' && !is_separator(*cipher_end))
++cipher_end;
j = cipher_end - cipher_start < CIPHER_NAME_BUF_LEN - 1 ?
cipher_end - cipher_start : CIPHER_NAME_BUF_LEN - 1;
strncpy(cipher_name, cipher_start, j);
cipher_name[j] = '\0';
cipher_start = cipher_end;
/* Lookup the cipher name in the table of available ciphers. If the cipher
name starts with "TLS_" we do the lookup by IANA name. Otherwise, we try
to match cipher name by an (OpenSSL) alias. */
if(strncasecompare(cipher_name, "TLS_", 4)) {
for(i = 0; i < NUM_OF_CIPHERS &&
!strcasecompare(cipher_name, ciphertable[i].name); ++i);
}
else {
for(i = 0; i < NUM_OF_CIPHERS &&
!strcasecompare(cipher_name, ciphertable[i].alias_name); ++i);
}
if(i == NUM_OF_CIPHERS) {
infof(data, "BearSSL: unknown cipher in list: %s", cipher_name);
continue;
}
/* No duplicates allowed */
for(j = 0; j < selected_count &&
selected_ciphers[j] != ciphertable[i].num; j++);
if(j < selected_count) {
infof(data, "BearSSL: duplicate cipher in list: %s", cipher_name);
continue;
}
DEBUGASSERT(selected_count < NUM_OF_CIPHERS);
selected_ciphers[selected_count] = ciphertable[i].num;
++selected_count;
}
if(selected_count == 0) {
failf(data, "BearSSL: no supported cipher in list");
return CURLE_SSL_CIPHER;
}
br_ssl_engine_set_suites(ssl_eng, selected_ciphers, selected_count);
return CURLE_OK;
}
static CURLcode bearssl_connect_step1(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
struct ssl_primary_config *conn_config = Curl_ssl_cf_get_primary_config(cf);
struct ssl_config_data *ssl_config = Curl_ssl_cf_get_config(cf, data);
const struct curl_blob *ca_info_blob = conn_config->ca_info_blob;
const char * const ssl_cafile =
/* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */
(ca_info_blob ? NULL : conn_config->CAfile);
const char *hostname = connssl->hostname;
const bool verifypeer = conn_config->verifypeer;
const bool verifyhost = conn_config->verifyhost;
CURLcode ret;
unsigned version_min, version_max;
#ifdef ENABLE_IPV6
struct in6_addr addr;
#else
struct in_addr addr;
#endif
DEBUGASSERT(backend);
switch(conn_config->version) {
case CURL_SSLVERSION_SSLv2:
failf(data, "BearSSL does not support SSLv2");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_SSLv3:
failf(data, "BearSSL does not support SSLv3");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_0:
version_min = BR_TLS10;
version_max = BR_TLS10;
break;
case CURL_SSLVERSION_TLSv1_1:
version_min = BR_TLS11;
version_max = BR_TLS11;
break;
case CURL_SSLVERSION_TLSv1_2:
version_min = BR_TLS12;
version_max = BR_TLS12;
break;
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
version_min = BR_TLS10;
version_max = BR_TLS12;
break;
default:
failf(data, "BearSSL: unknown CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
if(ca_info_blob) {
2022-09-21 16:32:54 +08:00
struct cafile_source source;
source.type = CAFILE_SOURCE_BLOB;
source.data = ca_info_blob->data;
source.len = ca_info_blob->len;
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
if(verifypeer) {
failf(data, "error importing CA certificate blob");
return ret;
}
/* Only warn if no certificate verification is required. */
infof(data, "error importing CA certificate blob, continuing anyway");
}
}
if(ssl_cafile) {
2022-09-21 16:32:54 +08:00
struct cafile_source source;
source.type = CAFILE_SOURCE_PATH;
source.data = ssl_cafile;
source.len = 0;
ret = load_cafile(&source, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
if(verifypeer) {
failf(data, "error setting certificate verify locations."
" CAfile: %s", ssl_cafile);
return ret;
}
infof(data, "error setting certificate verify locations,"
" continuing anyway:");
}
}
/* initialize SSL context */
br_ssl_client_init_full(&backend->ctx, &backend->x509.minimal,
backend->anchors, backend->anchors_len);
br_ssl_engine_set_versions(&backend->ctx.eng, version_min, version_max);
br_ssl_engine_set_buffer(&backend->ctx.eng, backend->buf,
sizeof(backend->buf), 1);
if(conn_config->cipher_list) {
/* Override the ciphers as specified. For the default cipher list see the
BearSSL source code of br_ssl_client_init_full() */
ret = bearssl_set_selected_ciphers(data, &backend->ctx.eng,
conn_config->cipher_list);
if(ret)
return ret;
}
/* initialize X.509 context */
backend->x509.vtable = &x509_vtable;
backend->x509.verifypeer = verifypeer;
backend->x509.verifyhost = verifyhost;
br_ssl_engine_set_x509(&backend->ctx.eng, &backend->x509.vtable);
if(ssl_config->primary.sessionid) {
void *session;
Curl_ssl_sessionid_lock(data);
if(!Curl_ssl_getsessionid(cf, data, &session, NULL)) {
br_ssl_engine_set_session_parameters(&backend->ctx.eng, session);
infof(data, "BearSSL: re-using session ID");
}
Curl_ssl_sessionid_unlock(data);
}
if(cf->conn->bits.tls_enable_alpn) {
int cur = 0;
/* NOTE: when adding more protocols here, increase the size of the
* protocols array in `struct ssl_backend_data`.
*/
if(data->state.httpwant == CURL_HTTP_VERSION_1_0) {
backend->protocols[cur++] = ALPN_HTTP_1_0;
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_HTTP_1_0);
}
else {
#ifdef USE_HTTP2
if(data->state.httpwant >= CURL_HTTP_VERSION_2
#ifndef CURL_DISABLE_PROXY
&& (!Curl_ssl_cf_is_proxy(cf) || !cf->conn->bits.tunnel_proxy)
#endif
) {
backend->protocols[cur++] = ALPN_H2;
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_H2);
}
#endif
backend->protocols[cur++] = ALPN_HTTP_1_1;
infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_HTTP_1_1);
}
br_ssl_engine_set_protocol_names(&backend->ctx.eng,
backend->protocols, cur);
}
if((1 == Curl_inet_pton(AF_INET, hostname, &addr))
#ifdef ENABLE_IPV6
|| (1 == Curl_inet_pton(AF_INET6, hostname, &addr))
#endif
) {
if(verifyhost) {
failf(data, "BearSSL: "
"host verification of IP address is not supported");
return CURLE_PEER_FAILED_VERIFICATION;
}
hostname = NULL;
}
else {
char *snihost = Curl_ssl_snihost(data, hostname, NULL);
if(!snihost) {
failf(data, "Failed to set SNI");
return CURLE_SSL_CONNECT_ERROR;
}
hostname = snihost;
}
/* give application a chance to interfere with SSL set up. */
if(data->set.ssl.fsslctx) {
Curl_set_in_callback(data, true);
ret = (*data->set.ssl.fsslctx)(data, &backend->ctx,
data->set.ssl.fsslctxp);
Curl_set_in_callback(data, false);
if(ret) {
failf(data, "BearSSL: error signaled by ssl ctx callback");
return ret;
}
}
if(!br_ssl_client_reset(&backend->ctx, hostname, 1))
return CURLE_FAILED_INIT;
backend->active = TRUE;
connssl->connecting_state = ssl_connect_2;
return CURLE_OK;
}
static CURLcode bearssl_run_until(struct Curl_cfilter *cf,
struct Curl_easy *data,
unsigned target)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
unsigned state;
unsigned char *buf;
size_t len;
ssize_t ret;
CURLcode result;
int err;
DEBUGASSERT(backend);
for(;;) {
state = br_ssl_engine_current_state(&backend->ctx.eng);
if(state & BR_SSL_CLOSED) {
err = br_ssl_engine_last_error(&backend->ctx.eng);
switch(err) {
case BR_ERR_OK:
/* TLS close notify */
if(connssl->state != ssl_connection_complete) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
return CURLE_OK;
case BR_ERR_X509_EXPIRED:
failf(data, "SSL: X.509 verification: "
"certificate is expired or not yet valid");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_BAD_SERVER_NAME:
failf(data, "SSL: X.509 verification: "
"expected server name was not found in the chain");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_NOT_TRUSTED:
failf(data, "SSL: X.509 verification: "
"chain could not be linked to a trust anchor");
return CURLE_PEER_FAILED_VERIFICATION;
}
/* X.509 errors are documented to have the range 32..63 */
if(err >= 32 && err < 64)
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_SSL_CONNECT_ERROR;
}
if(state & target)
return CURLE_OK;
if(state & BR_SSL_SENDREC) {
buf = br_ssl_engine_sendrec_buf(&backend->ctx.eng, &len);
ret = Curl_conn_cf_send(cf->next, data, (char *)buf, len, &result);
if(ret <= 0) {
return result;
}
br_ssl_engine_sendrec_ack(&backend->ctx.eng, ret);
}
else if(state & BR_SSL_RECVREC) {
buf = br_ssl_engine_recvrec_buf(&backend->ctx.eng, &len);
ret = Curl_conn_cf_recv(cf->next, data, (char *)buf, len, &result);
if(ret == 0) {
failf(data, "SSL: EOF without close notify");
return CURLE_READ_ERROR;
}
if(ret <= 0) {
return result;
}
br_ssl_engine_recvrec_ack(&backend->ctx.eng, ret);
}
}
}
static CURLcode bearssl_connect_step2(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
CURLcode ret;
DEBUGASSERT(backend);
ret = bearssl_run_until(cf, data, BR_SSL_SENDAPP | BR_SSL_RECVAPP);
if(ret == CURLE_AGAIN)
return CURLE_OK;
if(ret == CURLE_OK) {
if(br_ssl_engine_current_state(&backend->ctx.eng) == BR_SSL_CLOSED) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
connssl->connecting_state = ssl_connect_3;
}
return ret;
}
static CURLcode bearssl_connect_step3(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
struct ssl_config_data *ssl_config = Curl_ssl_cf_get_config(cf, data);
CURLcode ret;
DEBUGASSERT(ssl_connect_3 == connssl->connecting_state);
DEBUGASSERT(backend);
if(cf->conn->bits.tls_enable_alpn) {
const char *protocol;
protocol = br_ssl_engine_get_selected_protocol(&backend->ctx.eng);
if(protocol) {
infof(data, VTLS_INFOF_ALPN_ACCEPTED_1STR, protocol);
#ifdef USE_HTTP2
if(!strcmp(protocol, ALPN_H2))
cf->conn->alpn = CURL_HTTP_VERSION_2;
else
#endif
if(!strcmp(protocol, ALPN_HTTP_1_1))
cf->conn->alpn = CURL_HTTP_VERSION_1_1;
else
infof(data, "ALPN, unrecognized protocol %s", protocol);
Curl_multiuse_state(data, cf->conn->alpn == CURL_HTTP_VERSION_2 ?
BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE);
}
else
infof(data, VTLS_INFOF_NO_ALPN);
}
if(ssl_config->primary.sessionid) {
bool incache;
bool added = FALSE;
void *oldsession;
br_ssl_session_parameters *session;
session = malloc(sizeof(*session));
if(!session)
return CURLE_OUT_OF_MEMORY;
br_ssl_engine_get_session_parameters(&backend->ctx.eng, session);
Curl_ssl_sessionid_lock(data);
incache = !(Curl_ssl_getsessionid(cf, data, &oldsession, NULL));
if(incache)
Curl_ssl_delsessionid(data, oldsession);
ret = Curl_ssl_addsessionid(cf, data, session, 0, &added);
Curl_ssl_sessionid_unlock(data);
if(!added)
free(session);
if(ret) {
return CURLE_OUT_OF_MEMORY;
}
}
connssl->connecting_state = ssl_connect_done;
return CURLE_OK;
}
static ssize_t bearssl_send(struct Curl_cfilter *cf, struct Curl_easy *data,
const void *buf, size_t len, CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
for(;;) {
*err = bearssl_run_until(cf, data, BR_SSL_SENDAPP);
if (*err != CURLE_OK)
return -1;
app = br_ssl_engine_sendapp_buf(&backend->ctx.eng, &applen);
if(!app) {
failf(data, "SSL: connection closed during write");
*err = CURLE_SEND_ERROR;
return -1;
}
if(backend->pending_write) {
applen = backend->pending_write;
backend->pending_write = 0;
return applen;
}
if(applen > len)
applen = len;
memcpy(app, buf, applen);
br_ssl_engine_sendapp_ack(&backend->ctx.eng, applen);
br_ssl_engine_flush(&backend->ctx.eng, 0);
backend->pending_write = applen;
}
}
static ssize_t bearssl_recv(struct Curl_cfilter *cf, struct Curl_easy *data,
char *buf, size_t len, CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
DEBUGASSERT(backend);
*err = bearssl_run_until(cf, data, BR_SSL_RECVAPP);
if(*err != CURLE_OK)
return -1;
app = br_ssl_engine_recvapp_buf(&backend->ctx.eng, &applen);
if(!app)
return 0;
if(applen > len)
applen = len;
memcpy(buf, app, applen);
br_ssl_engine_recvapp_ack(&backend->ctx.eng, applen);
return applen;
}
static CURLcode bearssl_connect_common(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool nonblocking,
bool *done)
{
CURLcode ret;
struct ssl_connect_data *connssl = cf->ctx;
curl_socket_t sockfd = cf->conn->sock[cf->sockindex];
timediff_t timeout_ms;
int what;
/* check if the connection has already been established */
if(ssl_connection_complete == connssl->state) {
*done = TRUE;
return CURLE_OK;
}
if(ssl_connect_1 == connssl->connecting_state) {
ret = bearssl_connect_step1(cf, data);
if(ret)
return ret;
}
while(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
/* check allowed time left */
timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
/* if ssl is expecting something, check if it's available. */
if(ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
curl_socket_t writefd = ssl_connect_2_writing ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
curl_socket_t readfd = ssl_connect_2_reading ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd,
nonblocking?0:timeout_ms);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
return CURLE_SSL_CONNECT_ERROR;
}
else if(0 == what) {
if(nonblocking) {
*done = FALSE;
return CURLE_OK;
}
else {
/* timeout */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
}
/* socket is readable or writable */
}
/* Run transaction, and return to the caller if it failed or if this
* connection is done nonblocking and this loop would execute again. This
* permits the owner of a multi handle to abort a connection attempt
* before step2 has completed while ensuring that a client using select()
* or epoll() will always have a valid fdset to wait on.
*/
ret = bearssl_connect_step2(cf, data);
if(ret || (nonblocking &&
(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state)))
return ret;
}
if(ssl_connect_3 == connssl->connecting_state) {
ret = bearssl_connect_step3(cf, data);
if(ret)
return ret;
}
if(ssl_connect_done == connssl->connecting_state) {
connssl->state = ssl_connection_complete;
*done = TRUE;
}
else
*done = FALSE;
/* Reset our connect state machine */
connssl->connecting_state = ssl_connect_1;
return CURLE_OK;
}
static size_t bearssl_version(char *buffer, size_t size)
{
return msnprintf(buffer, size, "BearSSL");
}
static bool bearssl_data_pending(struct Curl_cfilter *cf,
const struct Curl_easy *data)
{
struct ssl_connect_data *ctx = cf->ctx;
(void)data;
DEBUGASSERT(ctx && ctx->backend);
return br_ssl_engine_current_state(&ctx->backend->ctx.eng) & BR_SSL_RECVAPP;
}
static CURLcode bearssl_random(struct Curl_easy *data UNUSED_PARAM,
unsigned char *entropy, size_t length)
{
static br_hmac_drbg_context ctx;
static bool seeded = FALSE;
if(!seeded) {
br_prng_seeder seeder;
br_hmac_drbg_init(&ctx, &br_sha256_vtable, NULL, 0);
seeder = br_prng_seeder_system(NULL);
if(!seeder || !seeder(&ctx.vtable))
return CURLE_FAILED_INIT;
seeded = TRUE;
}
br_hmac_drbg_generate(&ctx, entropy, length);
return CURLE_OK;
}
static CURLcode bearssl_connect(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
CURLcode ret;
bool done = FALSE;
ret = bearssl_connect_common(cf, data, FALSE, &done);
if(ret)
return ret;
DEBUGASSERT(done);
return CURLE_OK;
}
static CURLcode bearssl_connect_nonblocking(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *done)
{
return bearssl_connect_common(cf, data, TRUE, done);
}
static void *bearssl_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
struct ssl_backend_data *backend = connssl->backend;
DEBUGASSERT(backend);
return &backend->ctx;
}
static void bearssl_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct ssl_backend_data *backend = connssl->backend;
size_t i;
DEBUGASSERT(backend);
if(backend->active) {
backend->active = FALSE;
br_ssl_engine_close(&backend->ctx.eng);
(void)bearssl_run_until(cf, data, BR_SSL_CLOSED);
}
if(backend->anchors) {
for(i = 0; i < backend->anchors_len; ++i)
free(backend->anchors[i].dn.data);
Curl_safefree(backend->anchors);
}
}
static void bearssl_session_free(void *ptr)
{
free(ptr);
}
static CURLcode bearssl_sha256sum(const unsigned char *input,
size_t inputlen,
unsigned char *sha256sum,
size_t sha256len UNUSED_PARAM)
{
br_sha256_context ctx;
br_sha256_init(&ctx);
br_sha256_update(&ctx, input, inputlen);
br_sha256_out(&ctx, sha256sum);
return CURLE_OK;
}
const struct Curl_ssl Curl_ssl_bearssl = {
{ CURLSSLBACKEND_BEARSSL, "bearssl" }, /* info */
SSLSUPP_CAINFO_BLOB | SSLSUPP_SSL_CTX | SSLSUPP_HTTPS_PROXY,
sizeof(struct ssl_backend_data),
Curl_none_init, /* init */
Curl_none_cleanup, /* cleanup */
bearssl_version, /* version */
Curl_none_check_cxn, /* check_cxn */
Curl_none_shutdown, /* shutdown */
bearssl_data_pending, /* data_pending */
bearssl_random, /* random */
Curl_none_cert_status_request, /* cert_status_request */
bearssl_connect, /* connect */
bearssl_connect_nonblocking, /* connect_nonblocking */
Curl_ssl_get_select_socks, /* getsock */
bearssl_get_internals, /* get_internals */
bearssl_close, /* close_one */
Curl_none_close_all, /* close_all */
bearssl_session_free, /* session_free */
Curl_none_set_engine, /* set_engine */
Curl_none_set_engine_default, /* set_engine_default */
Curl_none_engines_list, /* engines_list */
Curl_none_false_start, /* false_start */
bearssl_sha256sum, /* sha256sum */
NULL, /* associate_connection */
NULL, /* disassociate_connection */
NULL, /* free_multi_ssl_backend_data */
bearssl_recv, /* recv decrypted data */
bearssl_send, /* send data to encrypt */
};
#endif /* USE_BEARSSL */