curl/lib/sendf.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

782 lines
24 KiB
C
Raw Normal View History

2002-09-03 11:52:59 +00:00
/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
1999-12-29 14:20:26 +00:00
* \___|\___/|_| \_\_____|
*
* Copyright (C) 1998 - 2022, Daniel Stenberg, <daniel@haxx.se>, et al.
1999-12-29 14:20:26 +00:00
*
2002-09-03 11:52:59 +00:00
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
2020-11-04 14:02:01 +01:00
* are also available at https://curl.se/docs/copyright.html.
*
2001-01-03 09:29:33 +00:00
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
2002-09-03 11:52:59 +00:00
* furnished to do so, under the terms of the COPYING file.
1999-12-29 14:20:26 +00:00
*
2001-01-03 09:29:33 +00:00
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
1999-12-29 14:20:26 +00:00
*
* SPDX-License-Identifier: curl
*
2002-09-03 11:52:59 +00:00
***************************************************************************/
1999-12-29 14:20:26 +00:00
build: fix circular header inclusion with other packages This commit renames lib/setup.h to lib/curl_setup.h and renames lib/setup_once.h to lib/curl_setup_once.h. Removes the need and usage of a header inclusion guard foreign to libcurl. [1] Removes the need and presence of an alarming notice we carried in old setup_once.h [2] ---------------------------------------- 1 - lib/setup_once.h used __SETUP_ONCE_H macro as header inclusion guard up to commit ec691ca3 which changed this to HEADER_CURL_SETUP_ONCE_H, this single inclusion guard is enough to ensure that inclusion of lib/setup_once.h done from lib/setup.h is only done once. Additionally lib/setup.h has always used __SETUP_ONCE_H macro to protect inclusion of setup_once.h even after commit ec691ca3, this was to avoid a circular header inclusion triggered when building a c-ares enabled version with c-ares sources available which also has a setup_once.h header. Commit ec691ca3 exposes the real nature of __SETUP_ONCE_H usage in lib/setup.h, it is a header inclusion guard foreign to libcurl belonging to c-ares's setup_once.h The renaming this commit does, fixes the circular header inclusion, and as such removes the need and usage of a header inclusion guard foreign to libcurl. Macro __SETUP_ONCE_H no longer used in libcurl. 2 - Due to the circular interdependency of old lib/setup_once.h and the c-ares setup_once.h header, old file lib/setup_once.h has carried back from 2006 up to now days an alarming and prominent notice about the need of keeping libcurl's and c-ares's setup_once.h in sync. Given that this commit fixes the circular interdependency, the need and presence of mentioned notice is removed. All mentioned interdependencies come back from now old days when the c-ares project lived inside a curl subdirectory. This commit removes last traces of such fact.
2013-01-06 19:06:49 +01:00
#include "curl_setup.h"
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_LINUX_TCP_H
#include <linux/tcp.h>
#elif defined(HAVE_NETINET_TCP_H)
#include <netinet/tcp.h>
#endif
1999-12-29 14:20:26 +00:00
#include <curl/curl.h>
#include "urldata.h"
#include "sendf.h"
#include "cfilters.h"
#include "connect.h"
2013-12-17 23:32:47 +01:00
#include "vtls/vtls.h"
#include "vssh/ssh.h"
#include "easyif.h"
#include "multiif.h"
#include "strerror.h"
#include "select.h"
#include "strdup.h"
#include "http2.h"
#include "headers.h"
#include "ws.h"
/* The last 3 #include files should be in this order */
#include "curl_printf.h"
#include "curl_memory.h"
#include "memdebug.h"
2000-09-21 08:49:16 +00:00
#if defined(CURL_DO_LINEEND_CONV) && !defined(CURL_DISABLE_FTP)
/*
* convert_lineends() changes CRLF (\r\n) end-of-line markers to a single LF
* (\n), with special processing for CRLF sequences that are split between two
* blocks of data. Remaining, bare CRs are changed to LFs. The possibly new
* size of the data is returned.
*/
static size_t convert_lineends(struct Curl_easy *data,
char *startPtr, size_t size)
{
char *inPtr, *outPtr;
/* sanity check */
if(!startPtr || (size < 1)) {
return size;
}
if(data->state.prev_block_had_trailing_cr) {
/* The previous block of incoming data
had a trailing CR, which was turned into a LF. */
if(*startPtr == '\n') {
/* This block of incoming data starts with the
previous block's LF so get rid of it */
2017-09-09 23:55:08 +02:00
memmove(startPtr, startPtr + 1, size-1);
size--;
/* and it wasn't a bare CR but a CRLF conversion instead */
data->state.crlf_conversions++;
}
data->state.prev_block_had_trailing_cr = FALSE; /* reset the flag */
}
/* find 1st CR, if any */
inPtr = outPtr = memchr(startPtr, '\r', size);
if(inPtr) {
/* at least one CR, now look for CRLF */
2017-09-09 23:55:08 +02:00
while(inPtr < (startPtr + size-1)) {
/* note that it's size-1, so we'll never look past the last byte */
if(memcmp(inPtr, "\r\n", 2) == 0) {
/* CRLF found, bump past the CR and copy the NL */
inPtr++;
*outPtr = *inPtr;
/* keep track of how many CRLFs we converted */
data->state.crlf_conversions++;
}
else {
if(*inPtr == '\r') {
/* lone CR, move LF instead */
*outPtr = '\n';
}
else {
/* not a CRLF nor a CR, just copy whatever it is */
*outPtr = *inPtr;
}
}
outPtr++;
inPtr++;
} /* end of while loop */
2017-09-09 23:55:08 +02:00
if(inPtr < startPtr + size) {
/* handle last byte */
if(*inPtr == '\r') {
/* deal with a CR at the end of the buffer */
*outPtr = '\n'; /* copy a NL instead */
/* note that a CRLF might be split across two blocks */
data->state.prev_block_had_trailing_cr = TRUE;
}
else {
/* copy last byte */
*outPtr = *inPtr;
}
outPtr++;
}
2017-09-09 23:55:08 +02:00
if(outPtr < startPtr + size)
/* tidy up by null terminating the now shorter data */
*outPtr = '\0';
return (outPtr - startPtr);
}
return size;
}
#endif /* CURL_DO_LINEEND_CONV && !CURL_DISABLE_FTP */
#ifdef USE_RECV_BEFORE_SEND_WORKAROUND
bool Curl_recv_has_postponed_data(struct connectdata *conn, int sockindex)
{
struct postponed_data * const psnd = &(conn->postponed[sockindex]);
return psnd->buffer && psnd->allocated_size &&
psnd->recv_size > psnd->recv_processed;
}
static CURLcode pre_receive_plain(struct Curl_easy *data,
struct connectdata *conn, int num)
{
const curl_socket_t sockfd = conn->sock[num];
struct postponed_data * const psnd = &(conn->postponed[num]);
size_t bytestorecv = psnd->allocated_size - psnd->recv_size;
ssize_t recvedbytes;
/* WinSock will destroy unread received data if send() is
failed.
To avoid lossage of received data, recv() must be
performed before every send() if any incoming data is
available. However, skip this, if buffer is already full. */
if((conn->handler->protocol&PROTO_FAMILY_HTTP) != 0 &&
conn->recv[num] == Curl_cfilter_recv &&
(!psnd->buffer || bytestorecv)) {
const int readymask = Curl_socket_check(sockfd, CURL_SOCKET_BAD,
CURL_SOCKET_BAD, 0);
if(readymask != -1 && (readymask & CURL_CSELECT_IN) != 0) {
/* Have some incoming data */
if(!psnd->buffer) {
/* Use buffer double default size for intermediate buffer */
psnd->allocated_size = 2 * data->set.buffer_size;
psnd->buffer = malloc(psnd->allocated_size);
if(!psnd->buffer)
return CURLE_OUT_OF_MEMORY;
psnd->recv_size = 0;
psnd->recv_processed = 0;
#ifdef DEBUGBUILD
psnd->bindsock = sockfd; /* Used only for DEBUGASSERT */
#endif /* DEBUGBUILD */
bytestorecv = psnd->allocated_size;
}
DEBUGASSERT(psnd->bindsock == sockfd);
recvedbytes = sread(sockfd, psnd->buffer + psnd->recv_size,
bytestorecv);
if(recvedbytes > 0)
psnd->recv_size += recvedbytes;
}
}
return CURLE_OK;
}
static ssize_t get_pre_recved(struct connectdata *conn, int num, char *buf,
size_t len)
{
struct postponed_data * const psnd = &(conn->postponed[num]);
size_t copysize;
if(!psnd->buffer)
return 0;
DEBUGASSERT(psnd->allocated_size > 0);
DEBUGASSERT(psnd->recv_size <= psnd->allocated_size);
DEBUGASSERT(psnd->recv_processed <= psnd->recv_size);
/* Check and process data that already received and storied in internal
intermediate buffer */
if(psnd->recv_size > psnd->recv_processed) {
DEBUGASSERT(psnd->bindsock == conn->sock[num]);
copysize = CURLMIN(len, psnd->recv_size - psnd->recv_processed);
memcpy(buf, psnd->buffer + psnd->recv_processed, copysize);
psnd->recv_processed += copysize;
}
else
copysize = 0; /* buffer was allocated, but nothing was received */
/* Free intermediate buffer if it has no unprocessed data */
if(psnd->recv_processed == psnd->recv_size) {
free(psnd->buffer);
psnd->buffer = NULL;
psnd->allocated_size = 0;
psnd->recv_size = 0;
psnd->recv_processed = 0;
#ifdef DEBUGBUILD
psnd->bindsock = CURL_SOCKET_BAD;
#endif /* DEBUGBUILD */
}
return (ssize_t)copysize;
}
#else /* ! USE_RECV_BEFORE_SEND_WORKAROUND */
/* Use "do-nothing" macros instead of functions when workaround not used */
bool Curl_recv_has_postponed_data(struct connectdata *conn, int sockindex)
{
(void)conn;
(void)sockindex;
return false;
}
#define pre_receive_plain(d,c,n) CURLE_OK
#define get_pre_recved(c,n,b,l) 0
#endif /* ! USE_RECV_BEFORE_SEND_WORKAROUND */
2001-03-13 13:22:58 +00:00
/* Curl_infof() is for info message along the way */
#define MAXINFO 2048
1999-12-29 14:20:26 +00:00
void Curl_infof(struct Curl_easy *data, const char *fmt, ...)
1999-12-29 14:20:26 +00:00
{
DEBUGASSERT(!strchr(fmt, '\n'));
if(data && data->set.verbose) {
va_list ap;
int len;
char buffer[MAXINFO + 2];
1999-12-29 14:20:26 +00:00
va_start(ap, fmt);
len = mvsnprintf(buffer, MAXINFO, fmt, ap);
1999-12-29 14:20:26 +00:00
va_end(ap);
buffer[len++] = '\n';
buffer[len] = '\0';
Curl_debug(data, CURLINFO_TEXT, buffer, len);
1999-12-29 14:20:26 +00:00
}
}
/* Curl_failf() is for messages stating why we failed.
* The message SHALL NOT include any LF or CR.
*/
1999-12-29 14:20:26 +00:00
void Curl_failf(struct Curl_easy *data, const char *fmt, ...)
1999-12-29 14:20:26 +00:00
{
DEBUGASSERT(!strchr(fmt, '\n'));
if(data->set.verbose || data->set.errorbuffer) {
va_list ap;
int len;
char error[CURL_ERROR_SIZE + 2];
va_start(ap, fmt);
len = mvsnprintf(error, CURL_ERROR_SIZE, fmt, ap);
if(data->set.errorbuffer && !data->state.errorbuf) {
strcpy(data->set.errorbuffer, error);
data->state.errorbuf = TRUE; /* wrote error string */
}
error[len++] = '\n';
error[len] = '\0';
Curl_debug(data, CURLINFO_TEXT, error, len);
va_end(ap);
}
1999-12-29 14:20:26 +00:00
}
/*
* Curl_write() is an internal write function that sends data to the
* server. Works with plain sockets, SCP, SSL or kerberos.
*
* If the write would block (CURLE_AGAIN), we return CURLE_OK and
* (*written == 0). Otherwise we return regular CURLcode value.
*/
CURLcode Curl_write(struct Curl_easy *data,
curl_socket_t sockfd,
const void *mem,
size_t len,
ssize_t *written)
2000-08-24 12:33:16 +00:00
{
ssize_t bytes_written;
CURLcode result = CURLE_OK;
struct connectdata *conn;
int num;
DEBUGASSERT(data);
DEBUGASSERT(data->conn);
conn = data->conn;
num = (sockfd == conn->sock[SECONDARYSOCKET]);
#ifdef CURLDEBUG
{
/* Allow debug builds to override this logic to force short sends
*/
char *p = getenv("CURL_SMALLSENDS");
if(p) {
size_t altsize = (size_t)strtoul(p, NULL, 10);
if(altsize)
len = CURLMIN(len, altsize);
}
}
#endif
bytes_written = conn->send[num](data, num, mem, len, &result);
*written = bytes_written;
if(bytes_written >= 0)
/* we completely ignore the curlcode value when subzero is not returned */
return CURLE_OK;
/* handle CURLE_AGAIN or a send failure */
switch(result) {
case CURLE_AGAIN:
*written = 0;
return CURLE_OK;
case CURLE_OK:
/* general send failure */
return CURLE_SEND_ERROR;
default:
/* we got a specific curlcode, forward it */
return result;
}
2000-08-24 12:33:16 +00:00
}
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
/* Curl_send_plain sends raw data without a size restriction on 'len'. */
ssize_t Curl_send_plain(struct Curl_easy *data, int num,
const void *mem, size_t len, CURLcode *code)
{
struct connectdata *conn;
curl_socket_t sockfd;
ssize_t bytes_written;
DEBUGASSERT(data);
DEBUGASSERT(data->conn);
conn = data->conn;
sockfd = conn->sock[num];
/* WinSock will destroy unread received data if send() is
failed.
To avoid lossage of received data, recv() must be
performed before every send() if any incoming data is
available. */
if(pre_receive_plain(data, conn, num)) {
*code = CURLE_OUT_OF_MEMORY;
return -1;
}
#if defined(MSG_FASTOPEN) && !defined(TCP_FASTOPEN_CONNECT) /* Linux */
if(conn->bits.tcp_fastopen) {
bytes_written = sendto(sockfd, mem, len, MSG_FASTOPEN,
conn->ip_addr->ai_addr, conn->ip_addr->ai_addrlen);
conn->bits.tcp_fastopen = FALSE;
}
else
#endif
bytes_written = swrite(sockfd, mem, len);
*code = CURLE_OK;
if(-1 == bytes_written) {
int err = SOCKERRNO;
if(
#ifdef WSAEWOULDBLOCK
/* This is how Windows does it */
(WSAEWOULDBLOCK == err)
#else
/* errno may be EWOULDBLOCK or on some systems EAGAIN when it returned
due to its inability to send off data without blocking. We therefore
treat both error codes the same here */
(EWOULDBLOCK == err) || (EAGAIN == err) || (EINTR == err) ||
(EINPROGRESS == err)
#endif
) {
/* this is just a case of EWOULDBLOCK */
*code = CURLE_AGAIN;
}
else {
char buffer[STRERROR_LEN];
failf(data, "Send failure: %s",
Curl_strerror(err, buffer, sizeof(buffer)));
data->state.os_errno = err;
*code = CURLE_SEND_ERROR;
}
}
return bytes_written;
}
/*
* Curl_write_plain() is an internal write function that sends data to the
* server using plain sockets only. Otherwise meant to have the exact same
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
* proto as Curl_write().
*
* This function wraps Curl_send_plain(). The only difference besides the
* prototype is '*written' (bytes written) is set to 0 on error.
* 'sockfd' must be one of the connection's two main sockets and the value of
* 'len' must not be changed.
*/
CURLcode Curl_write_plain(struct Curl_easy *data,
curl_socket_t sockfd,
const void *mem,
size_t len,
ssize_t *written)
{
CURLcode result;
struct connectdata *conn = data->conn;
int num;
DEBUGASSERT(conn);
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
DEBUGASSERT(sockfd == conn->sock[FIRSTSOCKET] ||
sockfd == conn->sock[SECONDARYSOCKET]);
if(sockfd != conn->sock[FIRSTSOCKET] &&
sockfd != conn->sock[SECONDARYSOCKET])
return CURLE_BAD_FUNCTION_ARGUMENT;
num = (sockfd == conn->sock[SECONDARYSOCKET]);
*written = Curl_send_plain(data, num, mem, len, &result);
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
if(*written == -1)
*written = 0;
return result;
}
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
/* Curl_recv_plain receives raw data without a size restriction on 'len'. */
ssize_t Curl_recv_plain(struct Curl_easy *data, int num, char *buf,
size_t len, CURLcode *code)
{
struct connectdata *conn;
curl_socket_t sockfd;
ssize_t nread;
DEBUGASSERT(data);
DEBUGASSERT(data->conn);
conn = data->conn;
sockfd = conn->sock[num];
/* Check and return data that already received and storied in internal
intermediate buffer */
nread = get_pre_recved(conn, num, buf, len);
if(nread > 0) {
*code = CURLE_OK;
return nread;
}
nread = sread(sockfd, buf, len);
*code = CURLE_OK;
if(-1 == nread) {
int err = SOCKERRNO;
if(
#ifdef WSAEWOULDBLOCK
/* This is how Windows does it */
(WSAEWOULDBLOCK == err)
#else
/* errno may be EWOULDBLOCK or on some systems EAGAIN when it returned
due to its inability to send off data without blocking. We therefore
treat both error codes the same here */
(EWOULDBLOCK == err) || (EAGAIN == err) || (EINTR == err)
#endif
) {
/* this is just a case of EWOULDBLOCK */
*code = CURLE_AGAIN;
}
else {
char buffer[STRERROR_LEN];
failf(data, "Recv failure: %s",
Curl_strerror(err, buffer, sizeof(buffer)));
data->state.os_errno = err;
*code = CURLE_RECV_ERROR;
}
}
return nread;
}
static CURLcode pausewrite(struct Curl_easy *data,
int type, /* what type of data */
2008-09-04 19:43:35 +00:00
const char *ptr,
size_t len)
{
/* signalled to pause sending on this connection, but since we have data
we want to send we need to dup it to save a copy for when the sending
is again enabled */
struct SingleRequest *k = &data->req;
struct UrlState *s = &data->state;
unsigned int i;
bool newtype = TRUE;
/* If this transfers over HTTP/2, pause the stream! */
Curl_http2_stream_pause(data, TRUE);
if(s->tempcount) {
for(i = 0; i< s->tempcount; i++) {
if(s->tempwrite[i].type == type) {
/* data for this type exists */
newtype = FALSE;
break;
}
}
DEBUGASSERT(i < 3);
if(i >= 3)
/* There are more types to store than what fits: very bad */
return CURLE_OUT_OF_MEMORY;
}
else
i = 0;
if(newtype) {
/* store this information in the state struct for later use */
Curl_dyn_init(&s->tempwrite[i].b, DYN_PAUSE_BUFFER);
s->tempwrite[i].type = type;
s->tempcount++;
}
if(Curl_dyn_addn(&s->tempwrite[i].b, (unsigned char *)ptr, len))
return CURLE_OUT_OF_MEMORY;
/* mark the connection as RECV paused */
k->keepon |= KEEP_RECV_PAUSE;
return CURLE_OK;
}
/* chop_write() writes chunks of data not larger than CURL_MAX_WRITE_SIZE via
* client write callback(s) and takes care of pause requests from the
* callbacks.
2000-11-22 12:53:56 +00:00
*/
static CURLcode chop_write(struct Curl_easy *data,
int type,
char *optr,
size_t olen)
2000-11-22 12:53:56 +00:00
{
struct connectdata *conn = data->conn;
curl_write_callback writeheader = NULL;
curl_write_callback writebody = NULL;
char *ptr = optr;
size_t len = olen;
void *writebody_ptr = data->set.out;
2000-11-22 12:53:56 +00:00
if(!len)
return CURLE_OK;
/* If reading is paused, append this data to the already held data for this
type. */
if(data->req.keepon & KEEP_RECV_PAUSE)
return pausewrite(data, type, ptr, len);
/* Determine the callback(s) to use. */
if(type & CLIENTWRITE_BODY) {
#ifdef USE_WEBSOCKETS
if(conn->handler->protocol & (CURLPROTO_WS|CURLPROTO_WSS)) {
struct HTTP *ws = data->req.p.http;
writebody = Curl_ws_writecb;
ws->ws.data = data;
writebody_ptr = ws;
}
else
#endif
writebody = data->set.fwrite_func;
}
if((type & CLIENTWRITE_HEADER) &&
(data->set.fwrite_header || data->set.writeheader)) {
/*
* Write headers to the same callback or to the especially setup
* header callback function (added after version 7.7.1).
*/
writeheader =
data->set.fwrite_header? data->set.fwrite_header: data->set.fwrite_func;
}
/* Chop data, write chunks. */
while(len) {
size_t chunklen = len <= CURL_MAX_WRITE_SIZE? len: CURL_MAX_WRITE_SIZE;
if(writebody) {
size_t wrote;
Curl_set_in_callback(data, true);
wrote = writebody(ptr, 1, chunklen, writebody_ptr);
Curl_set_in_callback(data, false);
if(CURL_WRITEFUNC_PAUSE == wrote) {
if(conn->handler->flags & PROTOPT_NONETWORK) {
/* Protocols that work without network cannot be paused. This is
actually only FILE:// just now, and it can't pause since the
transfer isn't done using the "normal" procedure. */
failf(data, "Write callback asked for PAUSE when not supported");
return CURLE_WRITE_ERROR;
}
return pausewrite(data, type, ptr, len);
}
if(wrote != chunklen) {
failf(data, "Failure writing output to destination");
return CURLE_WRITE_ERROR;
}
2000-11-22 12:53:56 +00:00
}
ptr += chunklen;
len -= chunklen;
2000-11-22 12:53:56 +00:00
}
#ifndef CURL_DISABLE_HTTP
/* HTTP header, but not status-line */
if((conn->handler->protocol & PROTO_FAMILY_HTTP) &&
(type & CLIENTWRITE_HEADER) && !(type & CLIENTWRITE_STATUS) ) {
unsigned char htype = (unsigned char)
(type & CLIENTWRITE_CONNECT ? CURLH_CONNECT :
(type & CLIENTWRITE_1XX ? CURLH_1XX :
(type & CLIENTWRITE_TRAILER ? CURLH_TRAILER :
CURLH_HEADER)));
CURLcode result = Curl_headers_push(data, optr, htype);
if(result)
return result;
}
#endif
if(writeheader) {
size_t wrote;
Curl_set_in_callback(data, true);
wrote = writeheader(optr, 1, olen, data->set.writeheader);
Curl_set_in_callback(data, false);
if(CURL_WRITEFUNC_PAUSE == wrote)
/* here we pass in the HEADER bit only since if this was body as well
then it was passed already and clearly that didn't trigger the
pause, so this is saved for later with the HEADER bit only */
return pausewrite(data, CLIENTWRITE_HEADER |
(type & (CLIENTWRITE_STATUS|CLIENTWRITE_CONNECT|
CLIENTWRITE_1XX|CLIENTWRITE_TRAILER)),
optr, olen);
if(wrote != olen) {
failf(data, "Failed writing header");
return CURLE_WRITE_ERROR;
}
}
2000-11-22 12:53:56 +00:00
return CURLE_OK;
}
/* Curl_client_write() sends data to the write callback(s)
The bit pattern defines to what "streams" to write to. Body and/or header.
The defines are in sendf.h of course.
If CURL_DO_LINEEND_CONV is enabled, data is converted IN PLACE to the
local character encoding. This is a problem and should be changed in
the future to leave the original data alone.
*/
CURLcode Curl_client_write(struct Curl_easy *data,
int type,
char *ptr,
size_t len)
{
#if !defined(CURL_DISABLE_FTP) && defined(CURL_DO_LINEEND_CONV)
/* FTP data may need conversion. */
if((type & CLIENTWRITE_BODY) &&
(data->conn->handler->protocol & PROTO_FAMILY_FTP) &&
data->conn->proto.ftpc.transfertype == 'A') {
/* convert end-of-line markers */
len = convert_lineends(data, ptr, len);
}
#endif
return chop_write(data, type, ptr, len);
}
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
/*
* Curl_read_plain() is an internal read function that reads data from the
* server using plain sockets only. Otherwise meant to have the exact same
* proto as Curl_read().
*
* This function wraps Curl_recv_plain(). The only difference besides the
* prototype is '*n' (bytes read) is set to 0 on error.
* 'sockfd' must be one of the connection's two main sockets and the value of
* 'sizerequested' must not be changed.
*/
CURLcode Curl_read_plain(struct Curl_easy *data, /* transfer */
curl_socket_t sockfd, /* read from this socket */
char *buf, /* store read data here */
size_t sizerequested, /* max amount to read */
ssize_t *n) /* amount bytes read */
{
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
CURLcode result;
struct connectdata *conn = data->conn;
int num;
DEBUGASSERT(conn);
DEBUGASSERT(sockfd == conn->sock[FIRSTSOCKET] ||
sockfd == conn->sock[SECONDARYSOCKET]);
if(sockfd != conn->sock[FIRSTSOCKET] &&
sockfd != conn->sock[SECONDARYSOCKET])
return CURLE_BAD_FUNCTION_ARGUMENT;
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
num = (sockfd == conn->sock[SECONDARYSOCKET]);
sendf: change Curl_read_plain to wrap Curl_recv_plain (take 2) Prior to this change Curl_read_plain would attempt to read the socket directly. On Windows that's a problem because recv data may be cached by libcurl and that data is only drained using Curl_recv_plain. Rather than rewrite Curl_read_plain to handle cached recv data, I changed it to wrap Curl_recv_plain, in much the same way that Curl_write_plain already wraps Curl_send_plain. Curl_read_plain -> Curl_recv_plain Curl_write_plain -> Curl_send_plain This fixes a bug in the schannel backend where decryption of arbitrary TLS records fails because cached recv data is never drained. We send data (TLS records formed by Schannel) using Curl_write_plain, which calls Curl_send_plain, and that may do a recv-before-send ("pre-receive") to cache received data. The code calls Curl_read_plain to read data (TLS records from the server), which prior to this change did not call Curl_recv_plain and therefore cached recv data wasn't retrieved, resulting in malformed TLS records and decryption failure (SEC_E_DECRYPT_FAILURE). The bug has only been observed during Schannel TLS 1.3 handshakes. Refer to the issue and PR for more information. -- This is take 2 of the original fix. It preserves the original behavior of Curl_read_plain to write 0 to the bytes read parameter on error, since apparently some callers expect that (SOCKS tests were hanging). The original fix which landed in 12e1def5 and was later reverted in 18383fbf failed to work properly because it did not do that. Also, it changes Curl_write_plain the same way to complement Curl_read_plain, and it changes Curl_send_plain to return -1 instead of 0 on CURLE_AGAIN to complement Curl_recv_plain. Behavior on error with these changes: Curl_recv_plain returns -1 and *code receives error code. Curl_send_plain returns -1 and *code receives error code. Curl_read_plain returns error code and *n (bytes read) receives 0. Curl_write_plain returns error code and *written receives 0. -- Ref: https://github.com/curl/curl/issues/9431#issuecomment-1312420361 Assisted-by: Joel Depooter Reported-by: Egor Pugin Fixes https://github.com/curl/curl/issues/9431 Closes https://github.com/curl/curl/pull/9949
2022-11-14 03:30:30 -05:00
*n = Curl_recv_plain(data, num, buf, sizerequested, &result);
if(*n == -1)
*n = 0;
return result;
}
/*
* Internal read-from-socket function. This is meant to deal with plain
* sockets, SSL sockets and kerberos sockets.
*
* Returns a regular CURLcode value.
*/
CURLcode Curl_read(struct Curl_easy *data, /* transfer */
2011-08-25 22:42:02 +02:00
curl_socket_t sockfd, /* read from this socket */
char *buf, /* store read data here */
size_t sizerequested, /* max amount to read */
ssize_t *n) /* amount bytes read */
{
CURLcode result = CURLE_RECV_ERROR;
ssize_t nread = 0;
size_t bytesfromsocket = 0;
char *buffertofill = NULL;
struct connectdata *conn = data->conn;
/* Set 'num' to 0 or 1, depending on which socket that has been sent here.
If it is the second socket, we set num to 1. Otherwise to 0. This lets
us use the correct ssl handle. */
int num = (sockfd == conn->sock[SECONDARYSOCKET]);
*n = 0; /* reset amount to zero */
bytesfromsocket = CURLMIN(sizerequested, (size_t)data->set.buffer_size);
buffertofill = buf;
nread = conn->recv[num](data, num, buffertofill, bytesfromsocket, &result);
if(nread < 0)
goto out;
*n += nread;
result = CURLE_OK;
out:
/* DEBUGF(infof(data, "Curl_read(handle=%p) -> %d, nread=%ld",
data, result, nread)); */
return result;
}
/* return 0 on success */
void Curl_debug(struct Curl_easy *data, curl_infotype type,
char *ptr, size_t size)
{
if(data->set.verbose) {
static const char s_infotype[CURLINFO_END][3] = {
"* ", "< ", "> ", "{ ", "} ", "{ ", "} " };
if(data->set.fdebug) {
bool inCallback = Curl_is_in_callback(data);
Curl_set_in_callback(data, true);
(void)(*data->set.fdebug)(data, type, ptr, size, data->set.debugdata);
Curl_set_in_callback(data, inCallback);
}
else {
switch(type) {
case CURLINFO_TEXT:
case CURLINFO_HEADER_OUT:
case CURLINFO_HEADER_IN:
fwrite(s_infotype[type], 2, 1, data->set.err);
fwrite(ptr, size, 1, data->set.err);
break;
default: /* nada */
break;
}
}
}
}