mirror of
https://github.com/tencentmusic/cube-studio.git
synced 2025-03-07 15:08:51 +08:00
468 lines
18 KiB
Python
468 lines
18 KiB
Python
|
||
import ray
|
||
import re
|
||
|
||
import os
|
||
import sys
|
||
import time
|
||
|
||
from job.pkgs.k8s.py_k8s import K8s
|
||
k8s_client = K8s()
|
||
|
||
import argparse
|
||
import datetime, time
|
||
import pysnooper
|
||
|
||
# print(os.environ)
|
||
base_dir = os.path.split(os.path.realpath(__file__))[0]
|
||
KFJ_NAMESPACE = os.getenv('KFJ_NAMESPACE', '')
|
||
KFJ_TASK_ID = os.getenv('KFJ_TASK_ID', '')
|
||
KFJ_TASK_NAME = os.getenv('KFJ_TASK_NAME', '')
|
||
task_node_selectors = re.split(',|;|\n|\t', os.getenv('KFJ_TASK_NODE_SELECTOR', 'cpu=true,train=true'))
|
||
KFJ_TASK_NODE_SELECTOR = {}
|
||
for task_node_selector in task_node_selectors:
|
||
KFJ_TASK_NODE_SELECTOR[task_node_selector.split('=')[0]] = task_node_selector.split('=')[1]
|
||
|
||
KFJ_PIPELINE_ID = os.getenv('KFJ_PIPELINE_ID', '')
|
||
KFJ_RUN_ID = os.getenv('KFJ_RUN_ID', '')
|
||
KFJ_CREATOR = os.getenv('KFJ_CREATOR', '')
|
||
KFJ_RUNNER = os.getenv('KFJ_RUNNER','')
|
||
KFJ_PIPELINE_NAME = os.getenv('KFJ_PIPELINE_NAME', '')
|
||
KFJ_TASK_IMAGES = os.getenv('KFJ_TASK_IMAGES', '')
|
||
KFJ_TASK_VOLUME_MOUNT = os.getenv('KFJ_TASK_VOLUME_MOUNT', '')
|
||
KFJ_TASK_RESOURCE_CPU = os.getenv('KFJ_TASK_RESOURCE_CPU', '')
|
||
KFJ_TASK_RESOURCE_MEMORY = os.getenv('KFJ_TASK_RESOURCE_MEMORY', '')
|
||
NUM_WORKER = 3
|
||
HEADER_NAME = os.getenv('RAY_HOST', '')
|
||
WORKER_NAME = HEADER_NAME.replace('header', 'worker')
|
||
INIT_FILE=''
|
||
|
||
|
||
k8s_volumes, k8s_volume_mounts = k8s_client.get_volume_mounts(KFJ_TASK_VOLUME_MOUNT,KFJ_CREATOR)
|
||
|
||
|
||
print(k8s_volumes)
|
||
print(k8s_volume_mounts)
|
||
|
||
GPU_TYPE= os.getenv('KFJ_GPU_TYPE', 'NVIDIA')
|
||
GPU_RESOURCE= os.getenv('KFJ_TASK_RESOURCE_GPU', '0')
|
||
print(GPU_TYPE,GPU_RESOURCE)
|
||
|
||
|
||
def create_header_service(name):
|
||
service_json = {
|
||
"apiVersion": "v1",
|
||
"kind": "Service",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": name,
|
||
"labels":{
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"ports": [
|
||
{
|
||
"name": "client",
|
||
"protocol": "TCP",
|
||
"port": 10001,
|
||
"targetPort": 10001
|
||
},
|
||
{
|
||
"name": "dashboard",
|
||
"protocol": "TCP",
|
||
"port": 8265,
|
||
"targetPort": 8265
|
||
},
|
||
{
|
||
"name": "redis",
|
||
"protocol": "TCP",
|
||
"port": 6379,
|
||
"targetPort": 6379
|
||
}
|
||
],
|
||
"selector": {
|
||
"component": name
|
||
}
|
||
}
|
||
}
|
||
return service_json
|
||
|
||
# @pysnooper.snoop()
|
||
def create_header_deploy(name):
|
||
header_deploy = {
|
||
"apiVersion": "apps/v1",
|
||
"kind": "Deployment",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": name,
|
||
"labels":{
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"replicas": 1,
|
||
"selector": {
|
||
"matchLabels": {
|
||
"component": name,
|
||
"type": "ray"
|
||
}
|
||
},
|
||
"template": {
|
||
"metadata": {
|
||
"labels": {
|
||
"pipeline-id": KFJ_PIPELINE_ID,
|
||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||
"task-name": KFJ_TASK_NAME,
|
||
'rtx-user': KFJ_RUNNER,
|
||
"component": name,
|
||
"type": "ray",
|
||
"run-id": os.getenv('KFJ_RUN_ID', 'unknown'),
|
||
}
|
||
},
|
||
"spec": {
|
||
"restartPolicy": "Always",
|
||
"volumes": k8s_volumes,
|
||
# "imagePullSecrets": [
|
||
# {
|
||
# "name": "hubsecret"
|
||
# }
|
||
# ],
|
||
"affinity": {
|
||
"nodeAffinity": {
|
||
"requiredDuringSchedulingIgnoredDuringExecution": {
|
||
"nodeSelectorTerms": [
|
||
{
|
||
"matchExpressions": [
|
||
{
|
||
"key": node_selector_key,
|
||
"operator": "In",
|
||
"values": [
|
||
KFJ_TASK_NODE_SELECTOR[node_selector_key]
|
||
]
|
||
} for node_selector_key in KFJ_TASK_NODE_SELECTOR
|
||
]
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"podAntiAffinity": {
|
||
"preferredDuringSchedulingIgnoredDuringExecution": [
|
||
{
|
||
"weight": 5,
|
||
"podAffinityTerm": {
|
||
"topologyKey": "kubernetes.io/hostname",
|
||
"labelSelector": {
|
||
"matchLabels": {
|
||
"component": name,
|
||
"type":"ray"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"containers": [
|
||
{
|
||
"name": "ray-head",
|
||
"image": KFJ_TASK_IMAGES,
|
||
"imagePullPolicy": "Always",
|
||
"command": [
|
||
"/bin/bash",
|
||
"-c",
|
||
"%s ray start --head --port=6379 --redis-shard-ports=6380,6381 --num-cpus=$MY_CPU_REQUEST --object-manager-port=12345 --node-manager-port=12346 --block"%INIT_FILE
|
||
],
|
||
"ports": [
|
||
{
|
||
"containerPort": 6379
|
||
},
|
||
{
|
||
"containerPort": 10001
|
||
},
|
||
{
|
||
"containerPort": 8265
|
||
}
|
||
],
|
||
"volumeMounts": k8s_volume_mounts,
|
||
"env": [
|
||
{
|
||
"name": "MY_CPU_REQUEST",
|
||
"valueFrom": {
|
||
"resourceFieldRef": {
|
||
"resource": "requests.cpu"
|
||
}
|
||
}
|
||
}
|
||
],
|
||
"resources": {
|
||
"requests": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY,
|
||
},
|
||
"limits": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
|
||
header_deploy['spec']['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
header_deploy['spec']['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
|
||
return header_deploy
|
||
|
||
|
||
def create_worker_deploy(header_name,worker_name):
|
||
worker_deploy = {
|
||
"apiVersion": "apps/v1",
|
||
"kind": "Deployment",
|
||
"metadata": {
|
||
"namespace": KFJ_NAMESPACE,
|
||
"name": worker_name,
|
||
"labels": {
|
||
"run-id":os.getenv('KFJ_RUN_ID','unknown'),
|
||
"run-rtx":os.getenv('KFJ_RUNNER','unknown'),
|
||
"pipeline-rtx": os.getenv('KFJ_CREATOR', 'unknown'),
|
||
"task-id":os.getenv('KFJ_TASK_ID','unknown'),
|
||
"pipeline-id": os.getenv('KFJ_PIPELINE_ID', 'unknown')
|
||
}
|
||
},
|
||
"spec": {
|
||
"replicas": NUM_WORKER,
|
||
"selector": {
|
||
"matchLabels": {
|
||
"component": worker_name,
|
||
"type": "ray"
|
||
}
|
||
},
|
||
"template": {
|
||
"metadata": {
|
||
"labels": {
|
||
"pipeline-id": KFJ_PIPELINE_ID,
|
||
"pipeline-name": KFJ_PIPELINE_NAME,
|
||
"task-name": KFJ_TASK_NAME,
|
||
'rtx-user': KFJ_RUNNER,
|
||
"component": worker_name,
|
||
"type": "ray",
|
||
"run-id": os.getenv('KFJ_RUN_ID', 'unknown'),
|
||
|
||
}
|
||
},
|
||
|
||
"spec": {
|
||
"affinity": {
|
||
"nodeAffinity": {
|
||
"requiredDuringSchedulingIgnoredDuringExecution": {
|
||
"nodeSelectorTerms": [
|
||
{
|
||
"matchExpressions": [
|
||
{
|
||
"key": node_selector_key,
|
||
"operator": "In",
|
||
"values": [
|
||
KFJ_TASK_NODE_SELECTOR[node_selector_key]
|
||
]
|
||
} for node_selector_key in KFJ_TASK_NODE_SELECTOR
|
||
]
|
||
}
|
||
]
|
||
}
|
||
},
|
||
"podAntiAffinity": {
|
||
"preferredDuringSchedulingIgnoredDuringExecution": [
|
||
{
|
||
"weight": 5,
|
||
"podAffinityTerm": {
|
||
"topologyKey": "kubernetes.io/hostname",
|
||
"labelSelector": {
|
||
"matchLabels": {
|
||
"component": worker_name
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
},
|
||
# "imagePullSecrets": [
|
||
# {
|
||
# "name": "hubsecret"
|
||
# }
|
||
# ],
|
||
"restartPolicy": "Always",
|
||
"volumes": k8s_volumes,
|
||
"containers": [
|
||
{
|
||
"name": "ray-worker",
|
||
"image": KFJ_TASK_IMAGES,
|
||
"imagePullPolicy": "Always",
|
||
"command": [
|
||
"/bin/bash",
|
||
"-c",
|
||
"%s ray start --num-cpus=$MY_CPU_REQUEST --address=$RAY_HEAD_SERVICE_HOST:$RAY_HEAD_SERVICE_PORT_REDIS --object-manager-port=12345 --node-manager-port=12346 --block"%INIT_FILE
|
||
],
|
||
"volumeMounts": k8s_volume_mounts,
|
||
"env": [
|
||
{
|
||
"name": "MY_CPU_REQUEST",
|
||
"valueFrom": {
|
||
"resourceFieldRef": {
|
||
"resource": "requests.cpu"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"name": "RAY_HEAD_SERVICE_HOST",
|
||
"value": header_name
|
||
},
|
||
{
|
||
"name": "RAY_HEAD_SERVICE_PORT_REDIS",
|
||
"value": "6379"
|
||
}
|
||
],
|
||
"resources": {
|
||
"requests": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
},
|
||
"limits": {
|
||
"cpu": KFJ_TASK_RESOURCE_CPU,
|
||
"memory": KFJ_TASK_RESOURCE_MEMORY
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if GPU_TYPE=='NVIDIA' and GPU_RESOURCE:
|
||
worker_deploy['spec']['template']['spec']['containers'][0]['resources']['requests']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
worker_deploy['spec']['template']['spec']['containers'][0]['resources']['limits']['nvidia.com/gpu'] = GPU_RESOURCE.split(',')[0]
|
||
|
||
|
||
return worker_deploy
|
||
|
||
|
||
# @pysnooper.snoop()
|
||
def wait_for_nodes():
|
||
# Wait for all nodes to join the cluster.
|
||
while True:
|
||
resources = ray.cluster_resources()
|
||
node_keys = [key for key in resources if "node" in key]
|
||
num_nodes = sum(resources[node_key] for node_key in node_keys)
|
||
if num_nodes < NUM_WORKER:
|
||
print("{} nodes have joined so far, waiting for {} more.".format(num_nodes, NUM_WORKER - num_nodes))
|
||
sys.stdout.flush()
|
||
time.sleep(1)
|
||
else:
|
||
break
|
||
|
||
|
||
# @pysnooper.snoop()
|
||
def launcher_cluster(deal=None):
|
||
# 清理一下之前存在的
|
||
try:
|
||
print('begin delete old header service')
|
||
k8s_client.v1.delete_namespaced_service(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
print(e1)
|
||
|
||
try:
|
||
print('begin delete old header deployment')
|
||
k8s_client.AppsV1Api.delete_namespaced_deployment(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
print(e1)
|
||
|
||
try:
|
||
print('begin delete old worker deployment')
|
||
k8s_client.AppsV1Api.delete_namespaced_deployment(WORKER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
print(e1)
|
||
time.sleep(3)
|
||
|
||
if deal=='create':
|
||
header_service = create_header_service(HEADER_NAME)
|
||
header_deploy = create_header_deploy(HEADER_NAME)
|
||
worker_deploy = create_worker_deploy(HEADER_NAME,WORKER_NAME)
|
||
try:
|
||
print(KFJ_NAMESPACE)
|
||
print(header_service)
|
||
print('begin create ray header service,%s ' % datetime.datetime.now())
|
||
k8s_client.v1.create_namespaced_service(KFJ_NAMESPACE, header_service, pretty='true')
|
||
print('begin create ray header deployment,%s ' % datetime.datetime.now())
|
||
print(header_deploy)
|
||
k8s_client.AppsV1Api.create_namespaced_deployment(KFJ_NAMESPACE, header_deploy, pretty='true')
|
||
print('begin create ray worker deployment,%s ' % datetime.datetime.now())
|
||
print(worker_deploy)
|
||
k8s_client.AppsV1Api.create_namespaced_deployment(KFJ_NAMESPACE, worker_deploy, pretty='true')
|
||
# 等待创建完成
|
||
time.sleep(20)
|
||
header_host = "%s:10001" % HEADER_NAME
|
||
print('begin connect ray cluster %s,%s ' % (header_host,datetime.datetime.now()))
|
||
|
||
ray.util.connect(header_host,connection_retries=20)
|
||
wait_for_nodes()
|
||
print('ray cluster all node ready,%s ' % datetime.datetime.now())
|
||
|
||
except Exception as e:
|
||
print(e)
|
||
try:
|
||
print('begin delete error header service')
|
||
k8s_client.v1.delete_namespaced_service(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
try:
|
||
print('begin delete error header deployment')
|
||
k8s_client.AppsV1Api.delete_namespaced_deployment(HEADER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
# print(e1)
|
||
try:
|
||
print('begin delete error worker deployment')
|
||
k8s_client.AppsV1Api.delete_namespaced_deployment(WORKER_NAME, KFJ_NAMESPACE)
|
||
except Exception as e1:
|
||
pass
|
||
print(e1)
|
||
# 如果出现错误,报错退出。不进行下一步代码
|
||
raise e
|
||
|
||
|
||
if __name__ == '__main__':
|
||
arg_parser = argparse.ArgumentParser(description="build component")
|
||
arg_parser.add_argument('--num_workers', type=int, required=False, help="workers的数量", default=3)
|
||
arg_parser.add_argument('--deal', type=str, required=False, help="创建集群还是删除集群", default='create')
|
||
arg_parser.add_argument('--init', type=str, required=False, help="每个worker的初始化脚本,用来安装环境", default='')
|
||
args = arg_parser.parse_args()
|
||
print('NUM_WORKER',args.num_workers)
|
||
print('INIT_FILE',args.init)
|
||
|
||
if args.init.strip() and not os.path.exists(args.init):
|
||
print('init file not exist')
|
||
exit(1)
|
||
|
||
NUM_WORKER = int(args.num_workers)
|
||
if args.init.strip():
|
||
INIT_FILE = "bash "+args.init.strip()+" && "
|
||
launcher_cluster(deal=args.deal)
|